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Abstract 
A combination of cellular automata (CA) and finite element (FE) techniques provide a fast 
and flexible tool for multi-scale modelling of fracture. Two CA arrays with different cell 
sizes independent of the FE size were created to simulate the ductile and the brittle fracture 
propagation separately. The FE mesh size is then no longer tied with microstructure but 
rather chosen to adequately represent the macro strain gradients. Such a CA-FE model is very 
fast compared with the pure FE local approach modelling of fracture. Moreover both the 
ductile and the brittle fracture mechanisms can be implemented simultaneously in one run. A 
progressive step-by-step brittle crack propagation in the Charpy sample was simulated. Good 
agreement was obtained between the experimental and modelled Charpy energy, percentage 
of crystallinity and lateral expansion. The model was able to reproduce the scatter in the 
transition region. 

Introduction 
Despite considerable success of the local approach to fracture, Howard et. al. [1], there are 
two fundamental problems inherent in this technique that significantly restrict its usage in 
modelling transitional ductile-brittle fracture. Both problems have their roots in the complex 
inhomogeneous nature of materials such as steels and in the limitations of the finite element 
approach. The first problem is the high computational cost due to large numbers of small 
finite elements. Conflicting demands for the mesh size due to the different physical nature of 
ductile and brittle fracture is the second. 

The Cellular Automata – Finite Element (CAFE) approach used in this work offers 
solution to both problems, Shterenlikht [2]. In this approach material properties are moved 
away from the finite element mesh and distributed across the appropriate number of cellular 
automata arrays (CA arrays). Thus a finite element mesh is designed only to represent the 
macro strain gradients adequately. This is now a solely structural entity. A number of CA 
arrays, in which cell sizes can be chosen independently, provide the means to analyse 
material properties at each size scale separately. So a CAFE model can accommodate as 
many size scales as necessary to address all material properties of interest. However only two 
CA arrays are required to model the transitional ductile-brittle fracture. 

The CAFE model 
The CAFE model was realised via the user material subroutine VUMAT in the Abaqus 
Explicit finite element code [3]. This program utilises explicit dynamic integration of the 
equations of motion. Reduced integration 8-node finite elements were used to mesh the 
anticipated damage zone. These elements have only one integration point. 
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A number of local models for ductile damage exist, of which the most widely used are the 
Gurson[4, 5] model and that of Rousselier [6, 7]. The CAFE model reported here uses the 
Rousselier model to represent the development of ductile damage, principally because of its 
combination of simplicity and realism. However, comparable results could be obtained by 
encoding the Tvergaard [5] modified Gurson [4] model. 

Two independent CA arrays, called hereafter the brittle CA array and the ductile CA 
array, were created. The cell size in the brittle CA array is related to a size scale characterisic 
of brittle fracture. Accordingly the ductile CA array cell size is related to some characteristic 
distance relevant in ductile fracture. 

The general structure of the CAFE model is shown in Fig. 1. 

 

FIGURE 1. Flow of information between the finite element integration point and the ductile 
and the brittle CA arrays. 

 

At each time increment, ti+1, the Rousselier model integration is performed at the finite 
element integration point producing the new FE stress tensor, σij(ti+1), and the new damage 
variable, β(ti+1). The new damage variable is fed to the ductile CA array and distributed 
across all ductile CA cells according to the local strain concentration associated with any 
dead cells (microvoids). The FE stress tensor from the previous time increment, σij(ti), is used 
to calculate the maximum principal stress and its direction cosines. These direction cosines 
define planes in which fracture propagation is most likely. 

Each ductile CA cell is assigned a randomly generated critical value of the damage 
variable at the beginning of the simulation. Thus a simple ductile fracture criterion can be 
formulated. A ductile CA cell “dies” when its damage variable exceeds the critical value for 
this cell. The analysis of the ductile CA array therefore only consists of checking all ductile 
CA cells against this fracture criterion. This is a very fast procedure. 

After all ductile CA cells have been processed, the state of the ductile CA array, Υm(D), is 
mapped over the brittle CA array because the two arrays occupy the same physical space and 
any change of state in one array has to be visible in the other array. 

The simulation of fracture propagation at the brittle CA array is slightly more complicated 
than at the ductile array. Each brittle CA cell is assigned a randomly generated grain size, d, 
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and grain orientation angle, θ, at the beginning of the analysis. The fracture stress for this cell 
is calculated as follows, Lin et al. [8]: 

 σF = [πEγp/(1-ν)2d]1/2     (1) 

where E is Young's modulus, is ν Poisson's ratio and γp is the effective surface energy. Wu 
et al. [9] showed that the fracture stress calculated with equation (1) using coarse grains sizes 
correlates well with that measured experimentally for a Nb-microalloyed thermomechanically 
controlled rolled (TMCR) steel. 

The maximum principal stress is distributed across all brittle CA cells according to the 
local strain concentration. The fracture will propagate from a dead brittle cell m to a 
neighbouring cell l if the maximum principal stress at cell l exceeds its fracture stress and the 
misorientation angle between these two cells, |θm - θl| is smaller than the misorientation 
threshold, θF. Such a criterion is based on experimental results reported by Nohava et al. [10] 
and Bhattacharjee and Davis [11], which show that grain boundaries with high grain 
misorientation angles might inhibit or even stop brittle fracture. It is assumed that θF is 
temperature dependent by analogy with the temperature dependence of the parameters of the 
Beremin model for cleavage. Burstow [12] has found that the best fitted values for the 
reference stress, σu, of the Beremin model change significantly with temperature in a model 
in which the Weibull modulus, m, was insensitive to temperature. 

The use of only one grain orientation angle is, of course, a modelling simplification. In 
principle two angles are required to describe a crystal orientation. However, what really 
matters in modelling crack propagation from one grain to another is the grain misorientation 
angle, that is the minimum of all angles formed by pairs of crystallographic planes, where 
each pair contains one crystallographic plane of one grain and one crystallographic plane of 
the other grain. Perhaps it would be more correct to call θ a grain orientation angle class or 
type. 

At present fracture nucleation is not explicitly modelled. It is assumed that some brittle 
CA cells contain cleaved grain boundary carbides which may act as brittle fracture nucleation 
sites. The fraction of such cells is one of the model parameters. 

Similarly to the ductile CA array the brittle fracture analysis is performed by assessing all 
brittle CA cells against the brittle fracture criterion described above. After all brittle CA cells 
have been processed the state of the brittle CA array, Υm(B), is mapped onto the state of the 
ductile CA array to synchronise their states, Fig. 1. 

Finally the state variables of the FE integration point, Ya(ti+1), are calculated and returned 
back to the FE solver. At present there are two state variables: integrity, that is the fraction of 
alive cells, and the percentage of the brittle phase, that is the ratio of the number of dead 
brittle cells to the number of dead ductile cells. If integrity falls below a certain limit the FE 
integration point is considered failed and the fracture is assumed to cross the whole of the 
finite element. 

 
Experiment 
 

The CAFE model introduced above was used to simulate the Charpy impact test of a 
TMCR steel. The finite element mesh used is shown in Fig. 2. Only finite elements located at 
or near the anticipated crack propagation path were modelled with the CAFE approach, the 
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rest were pure finite elements. The specimen, the anvils and the striker were meshed and the 
contact interactions with friction were defined. 

 
FIGURE 2. The finite element mesh of the Charpy specimen, the anvils and the striker. 

 

The ductile cell size was taken as 0.2 mm based on the spacing between larger dimples, 
Fig. 3a, which for this TMCR steel are probably associated with larger precipitates, Davis 
[14]. Accordingly the brittle cell size was taken as 0.1 mm based on the cleavage facet size, 
Fig. 3b. Thus each finite element in the damage zone was associated with 125 ductile and 
1000 brittle CA cells. The whole of the damage zone, which consisted of 900 FEs had, 
therefore, 900000 brittle and 112500 ductile CA cells. It is worth noting that a pure FE model 
with such high numbers of FEs would be very difficult, if at all possible, to run except on a 
dedicated supercomputer. In contrast, the running time of such a CAFE Charpy test model 
was 2 days on a Pentium III 1GHz PC. 

  

a. Ductile fracture b. Brittle fracture 

 

FIGURE 3. Typical ductile and brittle fracture surfaces of the TMCR steel modelled. Fig. 
a. courtesy of Davis [14], Fig. b. is reproduced from [11]. 
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Results 
 
Fig. 4 shows a crack propagating through the Charpy sample at several time instances. Figs. 
4a and 4b show the initial ductile crack growth (green colour) from the root of the notch. The 
brittle fracture (black colour) starts after some ductile crack growth, Fig. 4c, and continues 
until the remaining ligament is very small, Fig. 4g, and the final fracture is due to plastic 
collapse. The final fracture surface shows a brittle zone surrounded by a ductile region, Fig 
4h.  

  
a. 3.6 × 10-4 sec b. 4.8 × 10-4 sec 

  
c. 6 × 10-4 sec d. 7.2 × 10-4 sec 

  
e. 8.4 × 10-4 sec f. 9.6 × 10-4 sec 

  
g. 1.32 × 10-3 sec h. 6 × 10-3 sec 

 
FIGURE 4. Fracture propagation on the CA scale at –30oC. Only dead brittle (black) and 

dead ductile (green) cells are shown. 
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The fracture surface obtained in another simulation is compared with the experimental one 
in Fig. 5. The locations and shapes of the brittle zones are in a qualitative agreement. 

 

 
a. Experiment  b. Simulation 

FIGURE 5. Experimental (a) and simulated (b) Charpy fracture surfaces. In (b) the black 
colour denotes brittle fracture and grey, the ductile fracture. 

 

Transition data was obtained by running the model at temperatures from –80oC to 0oC, 
three times at each temperature. Fig. 6 shows the simulated percentage of the brittle phase 
and total energy absorbed in the test. Overall there is a good agreement between the model 
and the experimental data. However, the model predicted a 50% ITT at approximately –30oC 
whereas the experimental ITT is –50oC – 60oC. 

The model predicts energies in excess of 50J at the lower shelf where the fracture is 100% 
brittle. This unrealistic result is caused by the fact that at present a crack cannot cross from 
one FE to another due to the limitations in the Abaqus code. As a consequence the crack has 
to reinitiate in each FE. This, of course, requires additional energy, raising the lower shelf 
toughness to unrealistic values. 

  

  

 

FIGURE 6.  Percentage of brittle phase and transition Charpy energy data. The 50% ITT 
and experimental data A are taken from Bhattacharjee et al. [13]; the experimental brittle 

phase was provided by Corus UK Ltd and the experimental data B is courtesy of Davis [14]. 
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The lateral expansion predicted by the model also agrees well with that measured by a 
calliper as shown in Fig. 7.  

 
 

FIGURE 7. Simulated and experimental Charpy lateral expansion data. 

 

Discussion 
The use of random number generators for grain size, grain orientation angle and the critical 
value of the damage variable means that during each modelling run the crack will propagate 
through a unique arrangement of CA cells. Thus it is possible to reproduce experimental 
scatter at both the micro (CA) and the macro (FE) scales. Figs. 4h and 5 show that two model 
runs generated two different fracture surfaces at the transition temperature –30oC. On the 
other hand Figs. 6 and 7 show that the scatter in the transition region results predicted by the 
model is higher that at the lower and at the higher shelf. This is consistent with the 
experimental data. 

Since CAFE model simulates progressive brittle fracture propagation, it differs 
fundamentally from the weakest link models (e.g. Beremin [15], Ruggieri [16]) in which the 
onset of brittle fracture is the critical event. Weakest link models typically assume that when 
the probability of brittle fracture exceeds a certain threshold the crack propagates in an 
unstable manner right through the structure under analysis. Neither the location of the 
cleavage initiation point, nor the shape of the brittle region, nor crack arrest can be predicted 
by these weakest link models. In contrast the CAFE model is suitable for such analysis. 

Conclusions 
 

The CAFE model used in this work has proven to be suitable for full three-dimensional 
multi-scale modelling of fracture. The model is fast, stable, flexible and expandable. The 
level of microstructural detail included is limited only by the experimental data available. For 
example, if statistics on carbide inclusions are available, they can be easily introduced into 
the model by adding another CA array with cell sizes relevant to carbide inclusion size. The 
ductile and the brittle fracture modes can be “switched” on and off, so the model parameters 
for both fracture mode can be calibrated independently. 
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Plans for the immediate future include finding ways to simulate crack propagation across 
the FE boundary. This will make model performance at the lower shelf more realistic. 
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