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Rousselies mntinuous ductile damage model (Roussgelig8l; Rousselierl987) is a popular alter-
native o GTN. Thebasics of integration of pressure dependent plastic model such as GTN or Rousselier’s
have been studied in detail (Avas, 1987).

1. Preliminaries
Bold symbols denote tensors of rank 1 (vectors) and 2. Helvetica symbols denote tensors of rank 4.
Strain rate decomposition is assumed:
E=£%+¢P
whereE is the total small strain. This unusual notation for small strain helps simplify notationltater
finite differences:

AE = Ae® + AgP
To dmplify notation we introduce the following definitions:

1 2 y
e=NeP ; ep=gtlre ese-g,l ; ng(ée:e)/z

o is the stress tensor

pE—%tra , Sso+pl ; qE(gS:S)%

Existence of pastic potentia], is asssumed. ¥pically, the plastic potential is the same as the flow
surface . The plastic potential is a function of 2 stressiiants, p andq, and of some internal variables,
ai.

9=9(p,q,ai)
The normality rule is:
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where from abee
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so that
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sincen andl are orthogonal in stress-strain spaceni.&.= 0, we hae

_.,909 __1 909
e—/\aqn ; Ep = 3A6p

and
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aqz(ge:e)%:/\gg(gn:n)%:ﬁgg: 2228:8)%:)'22
Expressingl from this and the previous expression £gr
£ 99 =-3¢ %
q ap P aq
or finally the normality rule leads to:
&q gg +3¢p gg =0

This important expression forms one equation in a system of non-linear equations forsgande,,.
Importantly this equation is valid for GTN and the Roussedienbdel, and possibly for other pressure
dependent models.

Also it's easy to see that can nev be witten as
£=¢pl tggn
which can be combined with elasticity tovgithe two remaining &pessions. Elasticity:
o=C:¢®
whereC is rank 4 elasticity tensor and
=gl +Nef =gl +AE-¢
so that the elasticity statement becomes
o=C:(ef+AE-¢)=0°-C:¢

The elastic tensor is
CZZGI+(K—§G)IDI
wherel is the rank 4 identity tensofo
1e=Ci(gpl +£gn) = (2GI +(K - % G)IOI): (pl +£gn) = 2Gepl +2Gegn +3(K - % G)epl =2Gggn + 3K gpl
Just as withr, o can be split along andl tensors:

pe=—%trae ; SP=o%+p°l qe=(gse:se)1/2
so that
0 =S-pl =S - p°l —2Gg4n - 3K el
which splits alongh andl:
S=8"-2Gggn ; p=p°+3Ke,
where the first equation means tB&fin, hence
38 2

n - qu
and expressing via q:
2 2
gan= §q"'n—ZGf:qn -~ q=0°-3G¢g,
For later we'll need the desitives:

g . G0 __

3G
d¢p " 0gq
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2. Roussdlier’s plastic potential

Rousselies notation uses,, andog, Which in our notation ar@ = -o,, andq = o. The harden-
ing (flow) function isH (¢g). Inthat notation the Rousseligastic potential is:
q -p
g=—+BDexp—-H
o poy
where all other terms are as in (Rousseli@87).

So the dewiatives ae:

0 -1 - 1
ﬁ = —BD exp7p : aﬁ -
op poy 1441 dqg »p
with that the normality rule becomes:
-1 -p 1
&g— BDexp—— +3¢,— =0
4 poy ® PO " p
or
BD -p
- _ — =0
Ep~&q 30, exp ot

which is identical to Eqn. (38)b in (Rousseli&387).
Finally, H is the hardening function of the total egalént plastic straink,:
H=H(Ey)
whereE, = Eq4(t) + £4. Hence
poodH _oH dEq _oH
deq O0Ey dgy  OEq
3. Damage variable and density

The system of equations becomes complete with the addition of the darolgere function and
the expression for densityrhese are taken directly from Eqns. (39)b, (45) and (46) in (Rous468a).

In our notation these are:
A =e4Dexp P
PO

pBB) =(1-fo+ foexpB)™

B(AB) = a1foexp Bp
wherepg = B, + AB, and g, is the damage variablevsa from the previous time/load increment.
For later we'll need the desdétives:

dp _
g =-(1-fo+ foexp B *foexp B =—p foexp
0B e Jp
RF e 2P Ds oy to(expBp - 02 fo(expB)?) = o1 fopexp B(L— pfoexp B)

ang 0 ang P8
4. Numerical problem formulation

There are 3 unknowns,, £ andAB. These are found by a solution of a system of 3 non-linear
equations - plastic potential equal to zero, normality rule andvttatien of the damageariable. Using
optimisation notation we can formulate the problem as:

X = (&p, £q: AB)
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f=1(x) = (f1(x), f2(x), f3(x))
We want to minimise some norm bfmost typically the 2nd normWe denote byx” the vector of argu-
ments that minimises the norm.
X" = min, [f(x)l
The numerical solution will require the Jacobian:
of

J_i
0X

In the following we dexie exlicit expressions fof andJ.

q -p
fi=g=—+BDep— -H=0
1=9 P prgl

;pzo

fzzfp_gq?qempal

fngﬁ—quexp_—p:O

PO
or introducing
z2=2ep, AB) = Dexp_—p
PO
0z __ -1 dp 0z _ —p;lap_Z p dp

an poy 0g, ' OAB T 0, p2 DB T oip? AMB

the system can be written as:

fl=g=g+Bz—H=0
P
Bz
fzzfp_fq?‘lzo
f3:A,B_€qZ:O
Components of Jacobian:
ofy_0f_ 0z 0t _9f_10a_. . 9L _0h _ -10p 0z 0B,
Ox, 0, 0, ' 0% 0eq  p 0eg " Oxg 0B D pZonp Cobp onp
o, 0, &B 0z 0f,_0f,_ Bz . 0%, _0f, __ & 0B o 020
ox; 0e, ~ 30y 0e, ' 0%, 0eq 30y ' 0x3 0DB 30y (BAB onp O
oy _0fy__, 0z . 0f_0h__ . 0f_0h _, _ 0z

Ox, 0, %0, ' Ox, 0eq ' Oxg 0D ‘9onp
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