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“Ingenious modifications. . . cannot change the basic error of the Berg-Gurson

approach. . . ”

P F Thomason. Ductile Fracture of Metals, Pergamon Press, 1990
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Summary

A coupled Cellular Automata – Finite Element (CAFE) three-dimensional multi-

scale model was applied in this work to the simulation of transitional ductile-

brittle fracture in steels. In this model material behaviour is separated from the

representation of structural response and material data is stored in an appropri-

ate number of cellular automata (CA). Two CA arrays, the “ductile” and the

“brittle”, are created, one is to represent material ductile properties, another is

to account for the brittle fracture. The cell sizes in both arrays are independent

of each other and of the finite element (FE) size. The latter is chosen only to

represent accurately the macro strain gradients. The cell sizes in each CA array

are linked to a microstructural feature relevant to each of the two fracture mech-

anisms. Such structure of the CAFE model results in a dramatic decrease of the

number of finite elements required to simulated the damage zone. Accordingly

the running times are cut down significantly compared with the conventional FE

modelling of fracture for similar representation of microstructure. The Rousse-

lier continuing damage model was applied to each cell in the ductile CA array.

The critical value of the maximum principal stress was used to assess the failure

of each cell in the brittle CA array. The model was implemented through a

user material subroutine for the Abaqus finite element code. Several examples

of model performance are given. Among them are the results of the modelling

of the Charpy test at transitional temperatures. For a laboratory rolled TMCR

steel the model was able to predict the transitional curve in terms of the Charpy

energy and the percentage of brittle phase, including realistic levels of scatter,

and the appearance of the Charpy fracture surface. The ways in which material

data can be fitted into the model are discussed and particular attention is drawn

upon the significance of the fracture stress distribution.
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Nomenclature

In this work tensor analysis is used whenever possible. The tensor quantities

are given as in Kachanov (1971).

Many symbols might have various sub- and superscripts. These are described

in the text.

α – grain orientation angle

β – damage variable (Rousselier model)

Γ – cell solution-dependent variable

∆ – change in variable  during one time increment

δij – Kronecker delta

εij – strain tensor

εe
ij – elastic strain tensor

εp
ij – plastic strain tensor, εp

ij = ep
ij + εp

mδij

ep
ij – plastic strain deviator

εp
m – mean plastic strain, εp

m = 1
3εii

εp
eq – equivalent plastic strain, εp

eq =
√

2
3ep

ije
p
ij

η – the fraction of the brittle CA cells which have a grain boundary carbide

θF – misorientation threshold

Λ – cell property

ν – Poisson’s ratio

Ξ – CA to FE transition function

σij – stress tensor, σij = Sij + σmδij

σm – mean stress, σm = 1
3σii

σeq – equivalent stress, σeq =
√

3
2SijSij

σI – maximum principal stress

σF – fracture stress

11



12 NOMENCLATURE

σY – yield stress

σY0 – first yield stress

Υ – cell state

Ω – cell transitional rule

A – total number of state variables per FE integration point

Cv – the total energy absorbed in the Charpy V-notch impact test

c – concentration factor for a CA array

dg – grain size

dk – direction cosines

E – Young’s modulus

Eijkl – isotropic elastic modulus tensor, Eijkl = 2Gδikδjl +
(

K − 2
3G
)

δijδkl

f – a probability density function

f0 – initial void volume fraction (Rousselier model)

G – shear modulus, G = E
2(1+ν)

K – compression modulus, K = E
3(1−2ν)

L – damage cell size

LFE – finite element size

M – mapping finction

M – total number of cells per CA

N – the set of natural numbers

N – total number of cell properties

n – hardening exponent

Q – total number of cell state variables

R – total number of integration points per finite element

Sij – stress deviator

t – time

T – temperature, in ◦C

Wβ – shape parameter of Weibull dustribution

Wγ – location parameter of Weibull dustribution

Wη – scale parameter of Weibull dustribution

Xmax – the maximum number of dead cells allowed per CA

Y – finite element solution-dependent variable



Chapter 1

The problem

There are two fundamental problems in modelling transitional ductile-brittle

fracture with finite element analysis. Both problems have their roots in the

complex inhomogeneous nature of materials such as steels and in the limitations

of the finite element approach. The first problem is the high computational cost

due to large numbers of small finite elements. Conflicting demands for the

mesh size due to the different physical nature of ductile and brittle fracture is

the second.

The local approach to fracture is a technique suitable for fracture propaga-

tion modelling because it takes into account only a small area ahead of the crack

tip. Therefore this approach is geometry-independent as opposed to single- and

two-parameter methods of fracture mechanics.

Exactly how small this area should be is determined by the need to correctly

represent the stress and strain gradients ahead of the notch tip. The stress and

strain fields there are the result of a complex interaction of different microstruc-

tural features. These can be grains, grain clusters, lath packets (in martensitic

and bainitic steels), large and small inclusions, grain boundary carbides, larger

precipitates, microcracks and microvoids etc. One common feature of all entries

in the above list is their size – they are all small compared to any structure

of engineering interest. Thus a finite element mesh of a structure with a crack

must have a highly refined region extending long enough ahead of the crack

tip to allow for modelling of the desired crack advance. In practice meshes

13



14 CHAPTER 1. THE PROBLEM

with tens of thousands of finite elements are not uncommon. The analysis of

such meshes takes weeks or months and is very unstable due to ill-conditioned

stiffness matrices.

At the same time the microstructural objects themselves can differ in size,

e.g. a grain is typically tens of times larger than a grain boundary carbide

and tens of times smaller than a lath packet. This has a profound influence

on the ruling mesh size designed for the analysis of brittle or ductile fracture

because the fracture progresses in microstructurally sensitive steps. In the case

of ductile fracture these steps will usually be of the order of spacing between

the microvoids or large inclusions. Grains, lath packet or a group of grains with

small misorientation angles are the objects whose sizes are usually taken as a

basis for the steps of brittle fracture advance. As the above step sizes might

differ tens of times so do the mesh sizes required to simulate the propagation of

brittle or ductile fracture. The only way these conflicting requirements can be

satisfied within a single finite element mesh is by choosing a compromise mesh

size. The accuracy of the solution is then a question.

The above two fundamental problems exist because in conventional finite

element analysis a finite element is a material and a structural unit simultane-

ously. The structure and material are thus merged into an inseparable entity.

This approach can be very ineffective.

The Cellular Automata – Finite Element (CAFE) approach used in this work

offers solution to both problems mentioned above. In this approach material

properties are moved away from the finite element mesh and distributed across

the appropriate number of cellular automata arrays. Thus a finite element

mesh is designed only to represent the macro strain gradients adequately. This

is now a solely structural entity. A number of cellular automata arrays, in which

cell sizes can be chosen independently, provide the means to analyse material

properties at each size scale separately. So a CAFE model can accommodate

as many size scales as necessary to address all material properties of interest.

However only two cellular automata arrays are required to model the transitional

ductile-brittle fracture.

The following chapter leads to the formulation of the CAFE model starting

with a review of major models for ductile, brittle and ductile-brittle fracture

proposed during the last half-century or so.



Chapter 2

Solutions

The fact that materials have a complex microstructure has long been recognised

by materials engineers and scientists (Czochralski, 1924; Nadai, 1950; Cottrell,

1967; Gilman, 1969). In fact, had a material been homogeneous, it would be

perfectly elastic until the final rupture by the separation of atoms (Knott, 1973;

Thompson and Knott, 1993; Hertzberg, 1996). This case would be perfectly

described by a single critical parameter, fracture toughness. It is the existence

of grains, grain boundaries, inclusions or, on even lower level, dislocations, that

demands the use of more complicated approaches to fracture analysis.

Extensive experimental studies of macro and micro fracture mechanisms

resulted in understanding of two distinctive failure physical processes. The first

is broadly called ductile and is characterised by relatively high energy needed

for fracture to take place, high level of macro plasticity and dull appearance

of the fracture surface. The fracture process that requires much less energy,

produces bright, light-reflective fracture surfaces and accompanied by little or

no plasticity is commonly called brittle. This is the second type of fracture.

Exactly how these two processes take place on a micro scale has been one

of the main issues of experimental research in fracture mechanics for the last

three decades. Simultaneously a number of material models describing the ex-

perimental findings have been developed.

15



16 CHAPTER 2. SOLUTIONS

2.1 Microanalysis of ductile fracture

A number of authors have observed regions of increased porosity next to the

fracture surfaces in ductile metals (Tipper, 1949; Puttick, 1959; Rogers, 1960;

Beachem, 1963; Gurland and Plateau, 1963; Bluhm and Morrissey, 1966; Liu

and Gurland, 1968; Hayden and Floreen, 1969; Gladman et al., 1970, 1971;

Gurland, 1972; Goods and Brown, 1979). Rhines (1961) was able to reproduce

the observed porosity in plasticine using polystyrene spheres as inclusions.

Therefore it was proposed that ductile fracture in steels is “fracture by the

growth of holes” (McClintock, 1968), “ductile fracture by internal necking of

cavities” (Thomason, 1968), is caused by “the large growth and coalescence

of microscopic voids” (Rice and Tracey, 1969) and is “via the nucleation and

growth of voids” (Gurson, 1977a). Long before, Bridgman (1952) came to sim-

ilar conclusions analysing the influence of hydrostatic pressure on the necking

behaviour in tensile tests. He found that ductility is increasing with increased

pressure up to a point where no cup-and-cone fracture can be observed and

the diameter of the neck is approaching zero. Bridgman explained this by the

closure of voids under very high pressure. Beachem (1975) reported eight (and

predicted another possible six) types of dimple shapes tied to a fracture mode.

Ductile fracture by void growth and coalescence involves three stages: mi-

crovoid nucleation, void growth and void coalescence (Bates, 1984; Thomason,

1990; Gladman, 1997; Thomason, 1998).

Voids might nucleate at cleaved particles (Gladman et al., 1971; Cox and

Low, 1974) or by decohesion of the interfaces of the second phase particles

(Beachem, 1975; Argon et al., 1975; Argon and Im, 1975). Smaller particles

require higher applied stresses for decohesion than larger ones. Based on this

Bates (1984) showed that although carbides play secondary role in tensile test

fracture, they might dominate the fracture process in fracture toughness test.

Void growth can be dilatational (volumetric) or by shape change. Stress

triaxiality has a dramatic effect on void growth type and therefore on strain to

fracture. In a tensile test voids grow in the direction of tensile stress prior neck-

ing. The onset of necking changes the uniaxial stress state to triaxial (Bridgman,

1952) which causes some volumetric growth (Gladman, 1997; Thomason, 1998)

and therefore significantly lowers the strain to rupture.
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Void coalescence is a process involving a localised internal necking of the

intervoid material (Thomason, 1981) and was observed in different materials

by Puttick (1959); Rhines (1961); Bluhm and Morrissey (1964) (very impressive

photographs from these works were reprinted by McClintock (1968) and Thoma-

son (1990, 1998)). The final stages of this process are associated with the failure

of the submicron intervoid ligament by shearing along crystallographic planes

or by microcleavage (Rogers, 1960; Cox and Low, 1974).

Development of theoretical models was slow due to the complex nature of

ductile fracture phenomena. Three stages (nucleation, growth and coalescence

of voids) have different nature and require separate physical models. As noted

by McClintock (1968), contrary to the initial yielding or brittle fracture, where

only the present stress state is needed for analysis, the size, shape and spacing

of holes are a result of the whole history of straining. Some of the major models

for ductile fracture are described below.

2.1.1 McClintock model

McClintock (1968) proposed a model for void growth and derived a criterion for

ductile fracture. He assumed a material containing a regular three-dimensional

array of cylindrical voids of elliptical section. The main axes of this array are

parallel to the principal stress axes. The condition for fracture was that each

void touches the neighbouring one. If the voids have the cylindrical axes parallel

to the z direction and two semi axes are designated as a and b, and if the voids

grow in the b direction then the approximate expression for the onset of fracture

takes the form:

dηzb

dεeq
=

1

lnF f
zb

[ √
3

2(1− n)
sinh

(√
3(1− n)

2

σa + σb

σeq

)

+
3

4

σa − σb

σeq

]

(2.1)

where dηzb

dεeq
is a damage rate (εeq - equivalent strain, dηzb - damage increment),

F f
zb is a critical value of the relative growth factor, n is a hardening exponent,

σa and σb are two of the principal stresses at infinity and σeq is the equivalent

stress.

The over-simplified nature of this model leads to unrealistic results. Most

important is that according to this model void growth is a smooth process

until the final rupture, whereas, as argued by Thomason (1968, 1981, 1998) and
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observed by Liu and Gurland (1968) and Hayden and Floreen (1969), the onset

of failure by void coalescence is essentially due to a loss of stability.

Nevertheless even this simple model demonstrates some fundamental fea-

tures of ductile fracture, e. g. very strong decrease of failure strain with increase

of stress triaxiality and a “size effect”, the need to know the stress history over

a region of the order of the void spacing.

2.1.2 Rice-Tracey model

The approach undertaken by Rice and Tracey (1969) is based on variational

analysis and the principle of maximum plastic work (Hill, 1983; Prager, 1959)

or Drucker’s stability postulate (Drucker, 1951, 1959; Khan and Huang, 1995).

The authors analysed a case of dilatational growth of a single spherical void in a

material under uniform stress state applied at infinity. They derived a classical

equation for void enlargement under a high triaxiality stress state:

D = 0.283 · exp

(

1.5
σm

σeq

)

(2.2)

where D is the ratio of the strain rate on the surface of a void to the strain rate

at infinity, σm is the mean stress and σeq is the equivalent stress.

The simplicity of the resulting equation is the major advantage of this model.

Probably it is for simplicity that it is by far the most famous void growth related

equation.

The practical use of this equation however is quite limited because the model

does not address void interaction, it cannot predict the fracture strain and

cannot explain ductile failure in pure shear. Indeed according to the equation

(2.2) if σm = 0 then the void acts merely as a stress concentrator with a constant

concentration factor.

Finally as pointed out by Thomason (1990) and Gladman (1997) void exten-

sion can be found only at very high levels of negative hydrostatic pressure. Void

shape distortion has a much bigger contribution in the process of void growth

(Liu and Gurland, 1968; Hayden and Floreen, 1969).

Needleman (1972) applied similar variational analysis to a doubly periodic

square array of circular cylindrical voids under plain strain conditions. He used

FEA to minimise the resulting functional. This model is not particularly famous,
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however, it inspired Gurson, section 2.1.4.

2.1.3 Argon-Im-Safoglu model

The authors analysed only the first stage of the process, i.e. void nucleation.

They proposed that the criterion for separation of large particles is reaching lo-

cally of a critical interfacial tensile strength. For the case of spherical inclusions

they derived the following equations for the radial stresses on the inclusion-

matrix interface (Argon et al., 1975).

For non-interacting inclusions:

σrr = k0





(

γ

γy

)
1
n

+
√

3

(√
6 (n + 1)

m

γ

γy

)
1

n+1



 (2.3)

For interacting inclusions:

σrr = k0





√
3

(√
3

λ
ρ

γ

γy

)
1
n

+

√
6

m

λ

ρ
+

(

γ

γy

)
1
n



 (2.4)

where k0 is the yield stress in shear, γ and γy are the present and yield shear

strains, n is a hardening exponent, m is the Taylor factor, generally taken as

3.1, λ is the inter-particle spacing and ρ is the particle radius.

According to this approach decohesion occurs when

σrr ≥ σc (2.5)

In a companion paper (Argon and Im, 1975) the authors obtained σc experi-

mentally for several materials and found values from σc = 990 MPa (Cu-0.6Cr

alloy) to σc = 1820 MPa (martensitic steel).

2.1.4 Berg-Gurson-Tvergaard-Needleman model

Berg (1970) suggested that localisation occurs when the hardening behaviour of

the matrix material is overweighed by softening due to the dilation of voids.

Inspired by the works of Berg (1970), McClintock (1968), Rice and Tracey

(1969) and Needleman (1972), Gurson (1977a) proposed a methodology for

obtaining an approximate yield surface for a material containing voids. He

applied a maximum plastic work principle to kinematically admissible velocity
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fields (Nadai, 1950; Drucker, 1959; Prager, 1959; Hill, 1983; Kachanov, 1971)

for long circular cylindrical and spherical voids. For the latter case the yield

function had the form:

Φ =

(

σeq

σy

)2

+ 2f ·cosh

(

3σm

2σy

)

− 1− f2 = 0 (2.6)

where f is a void volume fraction. This condition is reduced to the classical

Mises yield criterion if f = 0.

The change in void volume fraction was described as:

ḟ = ḟg + ḟn (2.7)

where ḟ is the void volume fraction rate, ḟg is the rate of growth of existing

voids and ḟn is the void nucleation rate. For the growth of existing voids Gurson

(1977b) proposed only dilation:

ḟg = (1− f)ε̇p
ijIij (2.8)

where ε̇p
ij is a plastic strain rate and Iij is the second-order unit tensor.

Various nucleation models have been proposed by Gurson (1977b), e.g.:

ḟn = fε(ε
p
eq)ε̇p

eq (2.9)

where fε - is the void nucleation intensity and εp
eq - is equivalent plastic strain.

Different aspects of void nucleation are discussed in Zhang et al. (2000);

Tvergaard (1990). In materials containing large inclusions, e.g. MnS particles,

voids would typically nucleate from these particles at the beginning of the plastic

deformation. For modelling purposes it is reasonable to assume that all voids are

nucleated at the beginning of the simulation and their amount is described by

a single parameter – the initial void volume fraction, f0, (Zhang et al., 2000).

If, however, the material is such that voids are mostly nucleated from small

particles, typically carbides, than a continuous nucleation mechanism is more

appropriate (HKS, 2001).

When Yamamoto (1978) applied the yield function of equation (2.6) to the

analysis of a shear band following a localisation theory of Rice (1977), he found

that for a body without imperfection this yield condition predicts unrealistically

large strain at localisation. He concluded that initial imperfections are necessary

in order to achieve localisation at reasonable strain.
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In an attempt to reduce the above discrepancy Tvergaard (1981, 1982a,b)

introduced two adjustable parameters, q1 and q2 in Gurson’s yield function (2.6):

Φ =

(

σeq

σy

)2

+ 2q1f ·cosh

(

3q2σm

2σy

)

−
[

1 +
(

q1f
2
)]

= 0 (2.10)

If q1 = q2 = 1 then (2.10) is reduced to (2.6). After comparison of modelling

results with those obtained experimentally by Gladman et al. (1970) and Glad-

man et al. (1971), Tvergaard (1981, 1982b) concluded that q1 = 1.5 and q2 = 1

improve the performance of the yield condition (2.6) by approximately 50%.

Some authors went further and introduced the q3 parameter (HKS, 2001):

Φ =

(

σeq

σy

)2

+ 2q1f ·cosh

(

3q2σm

2σy

)

−
[

1 + q3

(

f2
)]

= 0 (2.11)

Although some authors argued that q1, q2 and q3 are true material constants

(Tvergaard, 1982b, 1990; HKS, 2001), there is a growing experimental evidence

that they depend on the triaxiality level (Pardoen and Hutchinson, 2000; An-

drews et al., 2002).

The initial Gurson model can only simulate void nucleation and dilation.

However it does not account for void coalescence in any way. Tvergaard and

Needleman (1984) introduced the function f ∗(f) to model the rapid loss of

stress-carrying capacity. This was an attempt to account for void coalescence.

The function f∗(f) was chosen as:

f∗(f) =







f for f ≤ fc

fc − f∗
u − fc

ff − fc
(f − fc) for f > fc

where fc is a critical value of void volume fraction, the value at which a rapid

loss of load-bearing capacity begins; ff is void volume fraction at final fracture

and f∗
u = 1/q1.

Based on experimental (Brown and Embury, 1973; Goods and Brown, 1979)

and numerical (Andersson, 1977) results Tvergaard and Needleman (1984) have

chosen the values fc = 0.15 and ff = 0.25.

This model, which is usually called ‘Gurson-Tvergaard-Needleman’ or sim-

ply GTN, is probably used most frequently in engineering applications. It is

included in commercial finite element packages (HKS, 2001). However the na-

ture of the model still makes it difficult to achieve a good correlation with
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experiment. The main problem is that the model predicts strain to fracture

that is much higher than that observed in experiments.

Thomason (1981, 1985b); Zhang et al. (2000) and others argued that the

excessive high strain to fracture is a direct consequence of the model taking into

account only the homogeneous deformation. In fact the voids were effectively

substituted by a continuous porosity field. The only effect of voids in this model

is through the pressure-dependent yield surface.

There are other attempts, apart from the modifications introduced by Tver-

gaard and Needleman, to extend the validity of the Gurson (1977a) model. A

model dealing with prolate and oblate ellipsoidal cavities was proposed (Golo-

ganu et al., 1993, 1994). Based on this model and ideas of Thomason (section

2.1.7) Pardoen and Hutchinson (2000) introduced an ‘extended’ model. Another

combination of Gurson’s and Thomason’s approaches produced a ‘complete’

Gurson model (Zhang et al., 2000). These modified Gurson models produce

more realistic results than the GTN model. However they are significantly

more complex.

2.1.5 Lemaitre model

Based on concepts of a damage variable, D, and effective stress, σ̃ = σ
1−D ,

(Kachanov, 1971; Rabotnov, 1969), Lemaitre (1985, 1996) proposed a thermo-

dynamically consistent (Ziegler, 1977; Germain et al., 1983) theory of damage.

The model assumes a representative volume of material containing defects

(microcracks or microvoids). If the intersection of this volume with a plane

defined by a normal vector ~n is S and the area of intersection of voids and cracks

of the volume by this plane is SD (~n), then the damage variable is defined as

D (~n) = SD(~n)
S . Since 0≤SD (~n) ≤ S then 0 ≤ D (~n) ≤ 1. D = 0 means

undamaged material whereas D = 1 means that material has no load-bearing

capacity.

If D does not depend on ~n that the damage is considered isotropic and

D = SD

S . In this case the damage variable has the meaning of effective density

of microdefects.

The major principle of Lemaitre’s work is that “any strain constitutive equa-

tion for a damaged material may be derived in the same way as for a virgin ma-
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terial except that the usual stress is replaced by the effective stress” (Lemaitre,

1996). Based on this principle he derived the constitutive equation for ductile

damage. For the case of isotropic damage this condition has the form:

Ḋ =

[

A2

2ES0

(

2

3
(1 + ν) + 3(1− 2ν)

(

σm

σeq

)2
)

(

εp
eq

)
2
n

]s0

ε̇p
eq (2.12)

where A and n are material properties in the Ramberg-Osgood hardening law:

εp =

(

σ̃

A

)n

, (2.13)

S0 and s0 are parameters in the damage evolution law:

Ḋ =

(−y

S0

)s0+1

ε̇p
eq , (2.14)

which is based on the normality rule of potential of dissipation, ϕ:

Ḋ = −∂ϕ

∂y
. (2.15)

In the last two equations −y is called “the damage strain energy release rate”

(Lemaitre, 1985).

The Lemaitre model is very powerful in the sense that it can be applied to

any damage process, not just ductile damage. Its weak side, however, is that

by the very nature of thermodynamically consistent theory it is a continuum

theory. Therefore the Lemaitre ductile damage model is essentially a continuum

softening one where the presence of voids or cracks is introduced via damage

variable, D.

Other models based on Continuum Damage Mechanics (CDM) have been

formulated over the years (McDowell, 1997).

2.1.6 Rousselier model

Another thermodynamically consistent ductile damage theory was introduced

by Rousselier (1981). The plastic potential in this model has the form:

σeq

ρ
−H

(

εp
eq

)

+ B (β) Dexp

(

σm

ρσ1

)

= 0 (2.16)

where:

β̇ = ε̇p
eqDexp

(

σm

ρσ1

)

(2.17)
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ρ (β) =
1

1− f0 + f0expβ
(2.18)

B (β) =
σ1f0expβ

1− f0 + f0expβ
, (2.19)

β is a scalar damage variable. Its evolution is determined by equation 2.17.

While material is within elasticity limits β = 0,

B is the damage function,

ρ is a dimensionless density. From equation 2.18 it follows that ρ decreases

with increasing β,

D and σ1 are material constants,

f0 is the initial void volume fraction and

H
(

εp
eq

)

is a term describing the hardening properties of material. Usually

this is equal to the yield stress of the undamaged material, H
(

εp
eq

)

= σY

(

εp
eq

)

.

The Rousselier model has the same strong and weak sides as the previous

two, GTN and Lemaitre (Rousselier, 1987). All three are continuum damage

models and can therefore be used as constitutive models for material with mi-

crocavities. The models can be used for numerical simulation of fracture propa-

gation. Their weak side, however, is the inability to model shear fractures since

only a volumetric void growth is allowed.

2.1.7 Thomason model

Thomason (1968, 1981, 1982, 1985a,b, 1993) studied the details of the coales-

cence phenomenon. He formulated a sufficient condition for the stability of

incompressible plastic flow in the presence of microvoids for two- and three-

dimensional cases. His models based on plasticity theory (Hill, 1983; Kachanov,

1971) and theorems of limit analysis (Prager, 1959) were summarised in a book

(Thomason, 1990). He later criticised the models proposed by Gurson and

Rousselier as being based on an “erroneous criterion of microvoid coalescence”

(Thomason, 1998). Indeed Yamamoto (1978) has shown that Berg-Gurson

model gives realistic critical strains only after significant changes in void volume

fractions.

Thomason’s analysis resulted in the concept of incipient void coalescence

leading to an instantaneous change from incompressible to dilational plasticity

(Thomason, 1981). The condition for the onset of coalescence in a plane strain
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case has the following form:

(σIc − σI) ε̇Ic = 0 (2.20)

where σIc is the plastic limit-load stress, σI is the maximum principal stress and

ε̇Ic is the maximum principal strain rate across an intervoid matrix neck.

If only cylindrical voids are assumed then σIc can be represented by the

following empirical equation (Thomason, 1998):

σIc

2k
= 1.43 · f−1/6 − 0.91 (2.21)

where k is the maximum shear stress, k = σI − σm, and f is a void volume

fraction.

The Thomason model for void coalescence is probably the most physically

based and accurate to the present day. A strain to failure in a uniaxial test

predicted with this model is in a good agreement with the experimental results

(Thomason, 1982). However it can hardly be used for numerical modelling

because of two fundamental problems.

The limit-load model is not a constitutive one. It can only predict the onset

of void coalescence as a start of material and, what is more important, structural

instability. Thus a structure is considered instantly failed when the condition

of equation (2.20) is met.

The material rate of hardening in the intervoid matrix approaching duc-

tile fracture is reduced to a very low level. Plastic solids with low work-

hardening rate are described by second-order hyperbolic partial differential

equations (Thomason, 1998). These equations cannot at present be solved with

finite element methods (Johnson, 1987; Belytschko et al., 2000) but with what

mathematicians call the method of characteristics (Smith, 1965; Johnson, 1987)

and engineers – the slip-line technique (Hill, 1983).

A similar approach to void coalescence problem was explored by Szczepiński

(1982) who argued that a theoretical analysis of a plane strain rigid-plastic

material model with cylindrical holes is very complicated because there exists

strong stress concentration at the edges of the holes even during purely elastic

response. He proposed an idealised configuration where voids are initially intro-

duced as slits. The theoretical analysis can be then performed based on slip-line

technique.
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2.1.8 Cavitation models

In most cases microvoids do not show significant growth before the onset of

coalescence (Thomason, 1998). However if constraint is very high and if very

few void nucleation cites are present then volumetric void growth can be very

strong.

Ashby et al. (1989) observed the enlargement of a single void by a factor of

more than 106 in tensile tests of highly constrained lead wires.

Huang et al. (1991) analysed a single spherical void in elastic-plastic ma-

terials under a remote stress field. They showed that a complex interaction

of elasticity and plastic yielding can lead to a “cavitation instability”, if the

stresses in the material surrounding the void are sufficiently high so that the

work produced by these stresses to expand the void is less than the energy

released by such expansion.

It is easy to draw an analogy between the above analysis of the cavitation

instability and the energy condition of Griffith (1924) for an unstable crack

growth.

Faleskog and Shih (1997) conducted a two-dimensional plane strain finite

element analysis of a square material cell containing a single cylindrical void

in its centre. Their results were very similar to those reported by Huang et al.

(1991), that the stored elastic energy can cause void expansion by several orders

of magnitude over a negligible macroscopic strain increment.

2.2 Microanalysis of brittle fracture

Significant advance has been made in understanding of the brittle fracture phe-

nomenon since Griffith’s days (Griffith, 1921, 1924). At present there is a vast

amount of literature on the subject. A number of review books and papers have

been published (e.g. Averbach et al., 1959; Knott, 1973; Hahn, 1984; Thompson

and Knott, 1993).

2.2.1 Crack initiation models

It is generally agreed that a dislocation pile-up at an obstacle, such as a grain

– carbide interface, can cleave a grain boundary carbide and thus initiate a
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microcrack (McMahon and Cohen, 1965; Lin et al., 1987; Thompson and Knott,

1993). Thus some degree of plastic deformation in a ferrite grain is always

necessary to fracture a neighbouring carbide (Lin et al., 1987).

The stresses required to generate a microcrack can be written as follows:

τ = 4.4 · γ

na
, (2.22)

σ = K · γ

na
, (2.23)

where τ and σ are shear and normal stresses accordingly, γ is an effective surface

energy, n is the number of dislocations piled up against a grain boundary, a is

the atomic spacing and K is a coefficient depending on the arrangement of the

dislocation pile-up.

Equation (2.22) was obtained by Zener in 1948 (Hahn et al., 1959). The

coefficient K in equation (2.23) can be K = 2.7 (Orowan model, 1954), K = 5.3

(Bullough model, 1956) or K = 2 (Cottrell, 1959). The first two values are

taken from Hahn et al. (1959). The exact value of K depends on the assumed

dislocation model. Zener analysed a crack forming on a plane normal to the

operative slip plane. Orowan suggested that a polygonised array of dislocations

can generate a crack in the slip plane. In the Bullough model the crack occurs

in the slip plane. Cottrell assumed that two intersecting (110) slip planes in

b.c.c. materials produce a microcrack on the common (100) plane (Hahn et al.,

1959).

The shape of equations (2.22) and (2.23) suggests that the number of cracked

carbides increases with applied strain. Indeed the number and intensity of dis-

location pile-ups increases with plastic straining and hence the stresses required

to generate a microcrack decrease. This point is supported by experimental

observations (Gurland, 1972).

A microcrack in a cleaved carbide can advance if the following condition is

met:

σn ≥ σF (2.24)

where σn is a normal stress acting across the grain-carbide interface and σF is

a fracture or cleavage stress.

Smith (1966a,b) derived an equation for the fracture stress of a carbide –

ferrite interface. Based on Smith’s analysis Lin et al. (1987) obtained a similar
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equation for the fracture stress of a ferrite – ferrite interface. Both equations

are shown below.

σcf
F =

√

πEγcf

(1− ν2) dc
, (2.25)

σff
F =

√

πEγff

(1− ν2) dg
, (2.26)

where σcf
F and σff

F are the fracture stresses of a carbide – ferrite and a ferrite –

ferrite interfaces accordingly, γcf and γff are the effective surface energies of

a carbide – ferrite and a ferrite – ferrite interfaces accordingly, dc and dg are

carbide and ferrite grain sizes accordingly, E is the elasticity modulus and ν is

the Poisson’s ratio.

Ritchie et al. (1973) postulated that the condition of equation (2.24) has

to be satisfied over a distance of two grain sizes ahead of the crack tip for the

fracture advance to take place. This is commonly called the “critical distance”

idea (Thompson and Knott, 1993).

Later Curry and Knott (1978) proposed a statistical analysis of “eligible”

particles that can be found within the critical distance. An eligible particle

is a cracked particle with the crack length equal or greater than the critical

one. Their conclusion was that a very small percentage of large particles have

a disproportionate influence on the fracture resistance.

2.2.2 Weakest link models

Beremin (1983) developed the idea of eligible particles into a “weakest link”

statistical model. According to this model a certain volume, V , of material

ahead of the crack tip (usually the volume of the plastic zone) is assumed to

have a distribution of microcracks of different lengths. Catastrophic failure is

assumed to take place if a crack of critical length is found in this volume. This

microcrack is a weakest link, hence the name of the model. The probability of

failure is the probability of finding such microcrack.

It is further assumed that the volume V can be divided into smaller volumes

V0, which must be big enough so that the probability of finding a microcrack

of critical length is not negligible. At the same time V0 must not be too big so

that one can assume that the stress state is homogeneous over V0. Thus usually
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V0 is chosen to include several grains.

The failure probability takes the following form (Beremin, 1983; Lin et al.,

1987; Ruggieri, 1998):

Φ = 1− exp

[

−
∫ V

0

1

V0

∫ σ

0

g(S)dS

]

, (2.27)

where g(S)dS is the number of microcracks per V0 with stresses required to

propagate them between S and S + dS.

Usually a three-parameter Weibull probability distribution function (Wei-

bull, 1951) is used to express g(S)dS:

∫ σ

0

g(S)dS =

(

σI − σth

σu

)m

, (2.28)

where σI is a maximum principal stress in V0, m is a shape parameter, σu is a

scale parameter and σth is an offset parameter, a threshold stress, required to

propagate the largest feasible microcrack.

By substituting equation (2.28) into (2.27) one can obtain:

Φ = 1− exp

[

−
(

σw

σu

)m]

, (2.29)

where

σw =

[

1

V0

∫ V

0

(σI − σth) dV

]1/m

(2.30)

is called “Weibull stress” (Beremin, 1983).

A progressive brittle fracture statistical model based on “chain-of-bundles”

statistics (Gücer and Gurland, 1962) was proposed by Ruggieri et al. (1995).

In this model several critical events are allowed before the catastrophic failure

takes place. The analysis leads to Weibull statistics and effectively to the same

relations as expressed by equations (2.29) and (2.30) (Ruggieri, 1998).

Other forms of equation (2.28) can be used. Kroon and Faleskog (2002)

introduced the influence of applied strain on g(S)dS and used an exponential

distribution instead of Weibull:

∫ σ

0

g(S)dS = c · εp
eq ·
(

exp

[

−
(

σm

σI

)2
]

− exp

[

−
(

σm

σth

)2
])

, (2.31)

where σm and c are material parameters; σm corresponds to the stress needed

to propagate a mean size microcrack.
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The authors claim that their model predicts the influence of constraint on the

failure probability better than the model based on the three-parameter Weibull

distribution.

However, as pointed out by Wallin (1991), “even though the models may

differ considerably in their basic assumptions of the microscopic fracture mech-

anism, macroscopically most of them still yield an identical result”.

2.2.3 Crack arrest

The problem of crack arrest received somewhat less attention than the issue of

crack nucleation and growth. Perhaps this is due to fact that in many appli-

cations crack arrest does not happen, i.e. a brittle crack would not stop until

the end of a specimen or a structure component is reached. This situation is

described perfectly well by the critical event analysis.

Generally a running brittle crack can arrest if the applied stresses decrease

with increasing crack length (e.g. if the test is performed under displacement

control) or if a crack hits an area of fine grains. According to equation (2.26)

the fracture stress of a ferrite – ferrite interface is inversely related to the grain

size, so the fine grain region will represent a significant obstacle to an advancing

crack. There is some experimental evidence in support of this idea (Malik et al.,

1996; Jang et al., 2003).

There is also some experimental evidence that a high-angle misorientation

boundary can act as a crack arrester or at least retard or inhibit the crack

propagation (Zikry and Kao, 1996). Nohava et al. (2002) reported crack arrest

in A508 Class 3 steels at grain boundaries with 55◦ – 60◦ misorientation angles.

2.3 Coupled ductile-brittle fracture modelling

The main two problems of coupled ductile-brittle fracture modelling were dis-

cussed briefly in Chapter 1. These are high computational costs and conflicting

demands for the finite element mesh size.
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2.3.1 Size scales

Rousselier et al. (1989) proposed an inter-inclusion spacing, lc, as a ductile

fracture propagation step. Their metallographic examinations resulted in the

value lc = 0.55 mm for A508 steel.

Tvergaard and Needleman (1984) introduced D0, the initial spacing between

particle centres. They reported D0 ∼ 0.1 – 0.14 mm for an unspecified high

strength steel.

Some modern steels contain very few or indeed no detectable larger inclusions

(typically MnS). Some authors suggested a spacing between larger precipitates

as a suitable measure of a ductile fracture advance step. For a high purity

laboratory rolled thermo mechanically controlled rolled (TMCR) steels Davis

(2003) suggested the values of around 0.01 mm.

A ferritic grain size for tempered bainitic microstructures and a lath packet

size for microstructures related to segregated bands were linked to brittle frac-

ture propagation step by Beremin (1983). The values reported for A508 steel

were 0.011 mm for a ferritic grain size and 0.067 mm for a lath packet size.

These values led to the choice of the appropriate reference material volume, V0,

(section 2.2.2). V0 was taken as a cube with side 0.05 mm, which for A508

includes about 8 grains.

The concept of a damage cell or a computational cell (Xia and Shih, 1996;

Faleskog and Shih, 1997) is used to introduce the above microstructurally sig-

nificant size scales into the local approach to fracture mechanics methods.

Two ways of implementing the damage cell concept via FE methods have

been explored over the years.

The easiest approach is to associate a damage cell with each FE in or near

the damage zone. This assumes constructing the mesh of the damage zone with

damage cell sized FEs (Tvergaard and Needleman, 1984; Rousselier et al., 1989;

Howard et al., 1996; Xia and Shih, 1996; Koppenhoefer and Dodds, 1998).

In the other method FE sizes are not fixed to that of the damage cell.

Instead an additional size parameter is introduced into the model. This results

in a mesh-independent, non-local use of the theory (Bilby, Howard and Li, 1994;

Howard et al., 2000).

The damage cell sizes reported in the literature are 0.1 – 0.5 mm for ductile
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damage and 0.005 – 0.05 mm for brittle fracture. Whatever the exact values

for the ductile and brittle cell sizes are, they are substantially different. It is

therefore difficult to accommodate both damage cell sizes within one FE mesh.

The compromise approach is to use a unified damage cell for both types of

fracture. A damage cell of 0.125 mm was used by Sherry et al. (1998); Burstow

(1998); Howard et al. (2000) as a reasonable compromise between 0.05 mm

brittle and 0.25 – 0.5 mm ductile damage cells. Howard et al. (2000) reported

that performance of such a compromise model is virtually indistinguishable

from that of a more complicated mesh-independent model (Bilby, Howard and

Li, 1994).

2.3.2 Brittle fracture as a postprocessing operation

This approach involves two stages.

At the first stage a finite element solution is obtained using the local ap-

proach model for ductile damage. The stress history of all FEs in the plastic

zone is saved during the analysis.

The second stage consists of applying the weakest link statistical model to

the stress evolution data. The result is a probability of brittle failure as a

function of crack advance or time.

Various combinations of ductile and brittle models described in sections 2.1

and 2.2 can be used. The most popular are the GTN + Beremin (sections 2.1.4

and 2.2.2) (Xia and Shih, 1996; Xia and Cheng, 1997; Koppenhoefer and Dodds,

1998) and Rousselier + Beremin (section 2.1.6 and 2.2.2) (Eripret et al., 1996;

Sherry et al., 1998; Burstow, 1998; Howard et al., 2000).

This approach assumes a loss of stability associated with rapid loss of stiff-

ness somewhere in the damage zone as the onset of the catastrophic brittle

fracture. So this model can only predict the time of the critical event. Neither

the cleavage initiation site nor the shape of the crack can be predicted.

2.3.3 Folch model

In the model introduced by Folch the onset of cleavage of each damage cell is

assessed individually (Folch, 1997; Folch and Burdekin, 1999). In other words

the integration in equation (2.30) is performed over a volume of material within
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individual cell. It is easy to see that if the reference volume, V0, is equal to the

cell volume and the threshold stress, σth, is zero then the Weibull stress, σw, is

just the maximum principal stress. Therefore the equation 2.29 will have the

following form:

Φ = 1− exp

[

−
(

σI

σu

)m]

, (2.32)

so that the probability of cleavage is based only on the ratio of the maximum

principal stress to the scale parameter of a Weibull distribution. Such a con-

dition is very similar to the criterion for the onset of cleavage expressed by

equation 2.24.

In this approach the probability of cleavage of each cell is calculated at the

same time as its constitutive response. So both ductile and brittle fractures can

be modelled simultaneously. What is more important is that the progressive

element to element brittle fracture propagation can be simulated. The cleavage

initiation sites can now be identified and the brittle crack front can be obtained

explicitly. The authors reported good agreement with the results of Charpy and

the fracture toughness tests (Folch, 1997; Folch and Burdekin, 1999).

However the model is still limited by the compromise cell size.

2.4 Model calibration

Any continuous ductile damage or a statistical cleavage model has to be cali-

brated for a particular material, so that model parameters can be considered

true material properties.

A three-stage calibration of a GTN model was proposed by Faleskog et al.

(1998). In the first stage the parameters of the constitutive equation of the

model, q1, q2 and q3, are tuned so that GTN model predicts the same void

growth as the model of a discrete spherical cavity. The second stage consists

of tuning the critical and final fracture values of void volume fraction, fc and

ff , using a coalescence mechanics (Faleskog and Shih, 1997). The last stage is

the fracture process calibration in which a ductile cell size, LD, and an initial

void volume fraction, f0, are tuned by reproducing the behaviour of a fracture

test. This can be a fracture toughness, a single-edge-notched (SEN) bending or

a SEN tensile test (Gao et al., 1998).
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The above analysis is equally applicable to any other continuous ductile

damage model.

In practice however many people use a simplified calibration procedures. In

many cases LD is calculated with an empirical relationship, e.g. LD = 2N
−1/3
v

(Rousselier, 1987) or LD = 5N
−1/3
v (Rousselier et al., 1989), where Nv is the

average number of inclusions per unit volume. Empirical relationships are also

used for f0. Of these the most popular is Franklin’s formula based on the Mn

and S contents in a steel (Franklin, 1969). However other estimates are also

used, e.g. f0 = π
6 dxdydzNv, where dx, dy and dz are the average inclusion sizes

in three perpendicular dimensions (Batisse et al., 1987). The rest of the model

parameters are tuned to reproduce the results of a fracture test.

To tune the shape, m, and the scale, σu, parameters of a Weibull distribution

for the weakest-link statistical model the maximum likelihood method is usually

used (Khalili and Kromp, 1991; Burstow, 1998; Gao et al., 1999).

2.5 Conclusion

Although considerable success in the prediction of failure of engineering struc-

tures has been achieved over the last twenty years with the use of the local

approach to fracture, there are several important problems that demand fur-

ther investigation.

Among significant achievements of the coupled ductile-brittle fracture mo-

delling and the local approach to fracture in general one can list successful

predictions of all four spinning cylinder tests designed by AEA Technology, Ris-

ley, UK (Lidbury et al., 1994; Bilby, Howard, Othman, Lidbury and Sherry,

1994; Howard et al., 1996) and of the NESC (Network for Evaluating Steel

Components) experiment (Sherry et al., 1998).

However all attempts to date to transfer cleavage results from notched tensile

tests to precracked specimens failed (Howard et al., 2000).

The other two problems are long computational times and the conflicting

demands of the FE mesh size.

The author believes that the last two problems are rooted in the fact that

the local approach to fracture utilises finite element methods as its vehicle. This
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vehicle might not be fully appropriate for use in microstructure-related fracture

analysis.

The author’s thesis is that a combination of cellular automata and finite

element methods is more suitable for this task. The next chapter gives the

presentation of the proposed approach.
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Chapter 3

The CAFE solution

3.1 A CAFE model

A combination of cellular automata and finite elements (CAFE) has been used

successfully for solidification (Gandin et al., 1999; Vandyoussefi and Greer,

2002), static recrystallisation (Raabe and Becker, 2000) or oxide scale failure

(Das et al., 2001; Das, 2002; Das et al., 2003) modelling.

The CAFE model proposed here is a logical continuation of works by Bilby,

Howard and Li (1994), Folch (1997), Folch and Burdekin (1999), Raabe and

Becker (2000) and Das (2002). The structure of this model was first presented

by Beynon et al. (2002).

As opposed to pure finite element fracture modelling, where a finite element

is a structural and material unit simultaneously, the present model, as indeed all

CAFE models, separates the structure from the material. Separate independent

entities are used to carry structural and material information.

A finite element is completely defined by its stiffness matrix, Dijkl, and by

the interpolation functions, Np(ξk):

Dijkl =
∂σij

∂εkl
(3.1)

uij(ξk) = Np(ξk)up
ij (3.2)

where σij is the Cauchy (or true) stress tensor, εkl is the logarithmic (or true)

strain tensor, up
ij is the displacement tensor at the finite element node p, p =

1 . . . P , P is the total number of nodes in a finite element and ξk is the finite

37
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element parametric coordinates tensor, k = 1, 2, 3 and ξk = [−1 . . . + 1]; uij(ξk)

is the displacement tensor at point ξk of a finite element (HKS, 2001).

If heat transfer is not taken into account then material behaviour at an

integration (or Gaussian or material) point r is described by a constitutive

equation of the form

σ̇r
ij = f(ε̇r

ij) (3.3)

where σ̇r
ij and ε̇r

ij are stress and strain rate tensors respectively at an integration

point r, r = 1 . . . R, R is the total number of integration points per finite

element.

The separation of a conventional material finite element into a structural

and a material units is shown schematically in Figure 3.1.

Material FE Structural FE Material

= +

Dijkl, Np(ξk), Dijkl, Np(ξk) σ̇r
ij = f(ε̇r

ij)

σ̇r
ij = f(ε̇r

ij)

Figure 3.1: A finite element as a structural and a material unit.

In a CAFE model the role of material unit is given to an appropriate number

of arrays of cellular automata (CA).

A CA is a discrete time entity composed of a finite number of cells. The

space of cell states is also discrete. In a classical CA formulation (Von Neumann,

1966) the state of each cell Υm at time ti+1 is completely defined by the state

of this and the neighbouring cells at time ti:

Υm(ti+1) = Ω (Υm(ti), Υm
l (ti)) (3.4)

where Υm
l (ti) is the state of cell l from the neighbourhood of cell m at ti, l =

1 . . . L and L is the number of cells in the neighbourhood of cell m, m = 1 . . .M ,

M is the total number of cells in the CA; Ω is the transition rule and i ∈ N.
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Thus a CA is completely defined by the initial state of each cell, by the

transition rules for each cell and by the neighbourhood of each cell. Usually the

same transition rules and neighbourhood are applied to all cells in a CA.

One important property of the CA defined above is that in itself it is a

non-spatial entity. This means that cells do not need to have any size, shape

or location in physical space for the successful functioning of a CA. Moreover

whatever the spatial meaning given to cells there will be no effect on the CA

functioning. This property makes CA a very general tool suitable for numerous

applications in mathematics and engineering.

A clear spatial meaning has to be given to cells in the present CAFE model

since the purpose of a CA is a representation of material behavior where size

scale is important. We shall relate a CA cell to a damage cell.

A damage cell or a computational cell concept was described in section

2.3.1. It was shown there that the microstructurally significant size scales related

to ductile and brittle fractures are different. Therefore a material has to be

modelled with damage cells of two distinctly different sizes. This can be done

easily if a CA is chosen to represent material behaviour.

Two independent CAs, called hereafter the brittle CA array and the ductile

CA array, are created. The cell size in the brittle CA array is related to the

brittle damage cell size. Accordingly the ductile CA array cell size is related to

the ductile damage cell size.

The cubic shape of CA cells is adopted by analogy with the square (in

two dimensions) or cubic (in three dimensions) damage cells routinely used in

pure finite element fracture modelling (Xia and Shih, 1996; Howard et al., 2000).

Cubic CA cells are also the easiest for visualisation which is a problem for three-

dimensional structures. Finally the CA cell neighbourhood can be defined very

easily for a cubic cell.

A 26-cell neighbourhood is adopted in the present model for each cell. If one

imagines a 3×3×3 = 27 cell cube then the 26 cells lying around the central one

are its neighbourhood. Six cells of this neighbourhood have a common side with

the central cell; 12 cells have a common edge and 8 – a common corner. Such

a neighbourhood is a three-dimensional analogy of Moore’s two-dimensional 8-

cell neighbourhood (Hesselbarth and Göbel, 1991; Das, 2002). The properties
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of this 26-cell neighbourhood are given in Appendix A.

A CA must have self-closing boundary conditions if each cell is to have the

same 26-cell neighbourhood. Self-closing means that for a cell lying at the edge

of a CA the corresponding cells of the opposite edge are considered adjacent.

So a 26-cell neighbourhood of an edge cell consists of cells located at opposite

CA edges.

The 26-cell neighbourhood of a corner cell is shown in Figure 3.2.

Figure 3.2: A 26-cell neighbourhood of a corner cell in a CA with self-closing

boundary conditions.

A corner cell, x, is located at a “corner” of a three-dimensional cubic CA.

This corner is an intersection of three CA edges. The numbers of the neighbo-

uring cells are shown according to the convention given in Appendix A. In the

projection shown in Figure 3.2 the neighbouring cells 9 and 9̄ are located ex-

actly behind cell x and are therefore not visible. Cell 9̄ is situated immediately

behind cell x, and cell 9 occupies the corner of CA opposite to cell x.

The CA structure described above is a classical CA formulation (Von Neu-

mann, 1966). We shall now depart from the classical CA model by assigning a

set of properties to each cell of a CA. These are the properties which are set at

the beginning of the simulation and remain constant throughout the analysis.
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We shall also characterise a cell by a set of time-dependent state variables.

By adding the cell properties and state variables to the right part of equation

(3.4) we get the following evolution equation:

Υm(ti+1) = Ω (Υm(ti), Υm
l (ti), Λn

m, Λn
l , Γq

m(ti)) (3.5)

where Λn
m is property n of cell m, n = 1 . . .N , N is the total number of properties

of each cell; Λn
l is property n of a neighbouring cell l and Γq

m(ti) is a state variable

q of cell m at time ti, q = 1 . . .Q, Q is the total number of state variables defined

at each CA cell.

For simplicity we shall require that all cells of a CA have the same N and

the same Q. If this requirement is met then all cells of a CA can be processed

according to a unified algorithm.

We shall use the cell properties, Λn
m, to store some intrinsic material infor-

mation throughout the analysis. On the other hand the state variables, Γq
m(ti),

would come from the solution of material constitutive equations at time ti.

The number of cell properties and state variables is theoretically unlimited.

Exactly which material properties and solution-dependent state variables are

being represented in a CA depends on the particular realisation of the above

CAFE generalisation.

Finally we have to address the fact that two CA arrays, the brittle and the

ductile, occupy the same physical space. Therefore the state of cell m of one

CA array will depend on the states of a group of S corresponding cells of the

other CA array. This is necessary to ensure that any loss of material integrity,

whether due to the ductile or the brittle failure mechanism, is accounted for in

both CA arrays.

The full transfer rules for both CA arrays thus have the following form:

Υm(D)(ti+1) = ΩD

(

Υm(D)(ti), Υm
l(D)(ti), Λn

m(D), Λn
l(D), Γq

m(D)(ti),

Υs(B)(ti+1)
)

(3.6)

Υm(B)(ti+1) = ΩB

(

Υm(B)(ti), Υm
l(B)(ti), Λn

m(B), Λn
l(B), Γq

m(B)(ti),

Υs(D)(ti+1)
)

(3.7)

where subscripts D and B refer to cells from the ductile and the brittle CA

arrays accordingly, cell s belongs to the group of S cells of one CA array, the
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states of which will have an influence on cell m of the other CA array, s = 1 . . . S,

1 ≤ S ≤M .

The number of cells S of one CA array which will affect the state of cell m

of the other CA array is difficult to establish exactly. As will be shown later S

depends on the total number of cells in each array, MD and MB .

The brittle and the ductile CA arrays are totally independent of each other

as far as their construction is concerned. This means that the number and

the types of cells states, Υm(D) and Υm(B), the total numbers of cells in these

arrays, MD and MB , the total numbers and types of cell properties, ND and

NB , and state variables, QD and QB , and finally the transfer functions, ΩD and

ΩB can be chosen for each array independently. This gives us great freedom as

to how exactly material behaviour is represented through the two CA arrays.

However the cell states in the ductile CA array are affected by the states

of cells in the brittle CA array and vice versa. This property ensures that any

change in material integrity, no matter what fracture mechanism caused it, is

accounted for in both CA arrays.

Similarly to the way we introduced time-dependent state variables at each

CA cell, Γq
m(ti), to link the state of each cell with the solution of material con-

stitutive equations, we shall now introduce solution-dependent state variables

Y r
a at each finite element integration point r linked to the states of both CA

arrays:

Y r
a (ti+1) = Ξ

(

Υm(D)(ti+1), Υm(B)(ti+1)
)

(3.8)

where Y r
a (ti+1) is state variable a at time ti+1 and integration point r, a =

1 . . . A, A is the total number of state variables per integration point and Ξ

is the CA to FE transfer function. The same transfer function is used for all

material points.

Up until now we described the general principles of the ductile and the brittle

CA organisation and the link between them. The link between the FE and the

CA parts of a CAFE model depends on the exact technical realisation of a

CAFE generalisation. The rest of this chapter will deal only with the CAFE

model realised in the present work.
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3.2 The full model

The CAFE model was realised via the user material subroutine VUMAT in the

Abaqus/Explicit finite element code. This program utilises explicit dynamic

integration of the equations of motion. Reduced integration 8-node finite el-

ements C3D8R (HKS, 2001) were used to mesh the anticipated damage zone.

These elements have only one integration point (R=1).

The explicit dynamic version of the Abaqus code was chosen because of the

element removal feature which is not available in the Abaqus/Standard. The

removal of dead finite elements from the mesh is necessary in large deformation

analysis. Otherwise the dead elements, which have the highest strains, might

turn inside out. The solution will terminate in this case.

The general structure of a CAFE model is shown in Figure 3.3.

FE Ductile CA

∆εij(ti+1), σij(ti)→
← σij(ti+1), Ya(ti+1)

↓ Υm(D)(ti+1)

Υm(B)(ti+1) ↑

Brittle CA

Figure 3.3: Flow of information between the three parts of the full CAFE model.

The flow of information between the three parts of the CAFE model is shown

schematically with the arrows. However, the scheme does not show how the data

is being processed within each part of the whole model.
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3.2.1 The ductile CA array

The Rousselier continuous ductile damage model is used as a material constitu-

tive routine for the ductile CA array (section 2.1.6).

As we said in section 3.1 the ductile CA cells are related to the ductile

damage cells. Therefore the total number of cells per ductile CA, MD, has to

be chosen so that the linear size of an individual ductile CA cell is close to

the ductile damage cell size, LD. If we assume a cubic finite element of size

LFE × LFE × LFE then the following equation can be used to choose MD:

LFE
3
√

MD

= LD (3.9)

where 3
√

MD is the number of cells per dimension of a cubic ductile CA.

Each ductile cell m can take one of the two possible states, Υm(D),: alive or

dead. In the beginning of the simulation Υm(D)(t0) = alive.

Each ductile cell m has only one cell property (ND = 1), this is the value of

initial void volume fraction, Λ1
m(D) = fm

0 . A random number generator is used

to generate fm
0 for each cell at the beginning of the simulation.

Each ductile cell m carries only one state variable (QD = 1), this is the

current value of the damage parameter, Γ1
m(D)(ti) = βm(ti).

The same critical value of the damage variable, βF, is used for all ductile

cells. Therefore βF is a model parameter rather than a cell property.

The state of each cell m is determined by the following criterion:

Υm(D)(ti+1) =







alive if βm(ti+1) < βF

dead otherwise
(3.10)

3.2.2 The brittle CA array

Similarly to section 3.2.1 the link between the brittle damage cell size, LB, and

the total number of brittle CA cells is as follows:

LFE

3
√

MB

= LB (3.11)

where 3
√

MB is the number of cells per dimension of a cubic brittle CA.

As was shown in section 2.3.1 a brittle damage cell is typically 10 – 20 times

larger than the mean (or median or mode) grain size.



3.2. THE FULL MODEL 45

Ideally, a brittle cell size has to be related to a grain size for a progressive

grain-to-grain fracture simulation. However for steels with small grain sizes this

will lead to extremely high numbers of brittle cells.

The following compromise approach is proposed in this work. The brittle

cell size is chosen with equation (3.11). However a randomly generated grain

size value is assigned to each brittle cell. Therefore computational efficiency

can be achieved while some real metallurgical data is retained in the brittle CA

array.

According to the present understanding of brittle fracture initiation (section

2.2.1) a brittle crack typically initiates from a hard particle. Most usually

this is a grain boundary carbide or a large inclusion, e.g. MnS. We simplify

this idea for the purpose of the present modelling and formulate the following

necessary condition for brittle crack initiation at a particular cell. Only cells

with an adjacent grain boundary carbide can initiate brittle fracture. Thus large

inclusions are not taken into account at present. However, as will be shown in

Chapter 5 the influence of large inclusions can be easily incorporated into the

model if only the information regarding the size, number and locations of such

particles is available.

Accordingly a special state of the brittle CA cell is created – alive with a grain

boundary carbide or simply aliveC. Only brittle cells with Υm(B)(t0) = aliveC

can initiate a brittle crack.

We have to address the problem of synchronising both CA arrays. All ductile

failures must be reflected into the brittle CA array. However a distinction must

be made between the brittle cells failed due to the brittle failure mode, and

those which were made dead artificially to synchronise the integrity of both CA

arrays. A special state of brittle CA cell is created – dead in the ductile CA

array or simply deadD.

Finally the state deadB is reserved for the brittle CA cells which fail when

the brittle failure criterion is satisfied.

Thus each brittle cell can take one of the four possible states, Υm(B),: alive,

aliveC, deadB or deadD.

In the beginning of the simulation Υu(B)(t0) = aliveC and Υv(B)(t0) =

alive, u = 1 . . . U , v = 1 . . . V , U + V = MB . So the fraction of brittle cells



46 CHAPTER 3. THE CAFE SOLUTION

which have a grain boundary carbide is η = U/MB . A random number generator

is used to assign the initial state to cells.

Each brittle cell m has two cell properties (NB = 2), these are the fracture

stress, Λ1
m(B) = σm

F , and the grain orientation angle, Λ2
m(B) = αm. The grain

orientation angle is obtained with a random number generator.

The use of only one grain orientation angle is, of course, a modelling simpli-

fication. In principle two angles are required to describe a crystal orientation

(Kelly and Groves, 1970). However, what really matters in modelling crack

propagation from one grain to another, is the grain misorientation angle, that

is the minimum of all angles formed by the pairs of the crystallographic planes,

where each pair contains one crystallographic plane of one grain and one crystal-

lographic plane of the other grain. The calculation of the grain misorientation

angle is very easy if each grain is described by only one orientation angle. How-

ever, it is a much more computationally expensive task if the orientation of each

grain is described by two angles.

Perhaps it would be more correct to call αm a grain orientation angle class or

type. This would imply that αm denotes a particular combination of two grain

orientation angles. Accordingly if l is a grain (brittle cell) adjacent to grain m

then |αm − αl| is a difference between the orientation classes (types) of grains

m and l. This is taken as an analogue of the true grain misorientation angle.

The fracture stress of a cell is linked to the size of the grain that this cell

embodies (equation (2.26) of section 2.2.1). A random number generator is used

to generate a grain size, dg , for each cell. Then a fracture stress is assigned to

each cell based on the generated grain size.

Each brittle cell m carries only one state variable (QB = 1), this is the

current value of the maximum principal stress, Γ1
m(B)(ti) = σm

I .

As was shown in section 2.2.3 a high-angle misorientation grain boundary

can inhibit or even arrest crack growth (Nohava et al., 2002; Bhattacharjee

and Davis, 2002; Bhattacharjee et al., 2003). Again we simplify this idea and

formulate the following necessary condition for crack propagation. A crack

will propagate from one brittle CA cell, m, to another, l, if the misorientation

angle for these two cells, defined as the absolute value of the difference of their

orientation angles, | αm − αl |, is less than a misorientation threshold, θF. It is
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assumed that θF is a material property.

Finally the following simple propagation criterion is used which must be

satisfied in all cases. A brittle cell m will become dead at time ti+1 if the

maximum principal stress, σm
I (ti), is greater than or equal to the fracture stress

of this cell, σm
F . This criterion is identical to that of Folch (1997), section 2.3.3,

if we require the probability of failure, Φ = 1, and σu = σF.

Thus the state of each cell m is determined by the following criterion:

Υm(B)(ti+1) =

=































deadB if σm
I (ti) ≥ σm

F ∧
{(

Υm(B)(ti) = aliveC
)

∨
([

Υm
l(B)(ti) = deadB ∨ Υm

l(B)(ti) = deadD
]

∧

| αm − αl |< θF

)}

Υm(B)(ti) otherwise

(3.12)

3.2.3 The FE part

Each material point has three solution-dependent variables (A = 3): state,

Y1(ti), integrity, Y2(ti), and the fraction of brittle phase, Y3(ti). As follows from

equation (3.8) the FE state variables depend on the states of the brittle and

ductile CA cells.

First, the number of brittle CA cells with Υm(B)(ti) = deadB,

XB
(B)(ti) =

MB
∑

m=1

m ∀m : Υm(B)(ti) = deadB, (3.13)

the number of brittle CA cells with Υm(B)(ti) = deadD,

XD
(B)(ti) =

MB
∑

m=1

m ∀m : Υm(B)(ti) = deadD, (3.14)

the total number of dead brittle CA cells,

X(B)(ti) = XB
(B)(ti) + XD

(B)(ti), (3.15)

and the total number of dead ductile CA cells,

X(D)(ti) =

MD
∑

m=1

m ∀m : Υm(D)(ti) = dead, (3.16)

are calculated.
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Then the FE state variables are calculated according to the following three

equations:

Y3(ti) =
XB

(B)(ti)

X(B)(ti)
(3.17)

Y2(ti) = 1− X(D)(ti)

Xmax
(D)

−
XB

(B)(ti)

Xmax
(B)

(3.18)

Y1(ti) =







dead if Y2(ti) ≤ 0

alive otherwise
(3.19)

where Xmax
(D) and Xmax

(B) are the maximum numbers of dead cells allowed in the

ductile and the brittle CA arrays respectively. If the number of dead cells in any

array exceeds its maximum then a crack (or ductile void linkage) is assumed to

propagate across the whole of the FE. The load-bearing capacity of this FE is

then considered zero and the FE is removed from the mesh.

So Y1 ∈ [alive, dead]; Y2 ∈ [−1 . . . 1] and Y3 ∈ [0 . . . 1]. In the beginning of

the analysis Y1(t0) = alive, Y2(t0) = 1 and Y3(t0) = 0 for all finite elements

included in the CAFE model. When a FE fails Y1(tf ) = dead and Y2(tf ) = 0,

where tf is the time of a FE failure.

3.2.4 How the model works

As seen from sections 3.2.1 and 3.2.2 there is a fundamental difference between

the roles of the ductile and the brittle CA arrays in the full model. While the

ductile CA array is used to calculate material constitutive response, the brittle

CA array is only used to assess the onset of brittle fracture at each cell. Before

the brittle CA cells can be processed to decide if any of them have died in this

time increment, the material response has to be calculated via the ductile array

(Figure 3.3).

Below is the sequence of operations performed at each time increment for

each FE and the corresponding two CA arrays of the CAFE model.

All tensors given to the VUMAT subroutine are in the local material orienta-

tion.

Step 1. Strain increment tensor at time ti+1, ∆εij(ti+1), and the stress tensor

at time ti, σij(ti), at the FE integration point are given by the Abaqus solver

to the VUMAT subroutine.
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Step 2. The maximum principal stress, σI(ti), and its direction cosines, dk(ti),

are calculated from σij(ti).

Step 3. The strain increment tensor at each ductile CA cell m at time ti+1,

∆εm
ij (ti+1), is calculated. The following criteria are used:

∀m ∆εm
ij(D)(ti+1) = ∆εij(ti+1) (3.20)

∀m : Υm(D)(ti) = dead:

if dl
k · dk(ti) ≈ 1 then ∆εl

ij(D)(ti+1) = cD ·∆εij(ti+1) (3.21)

where cD > 1 is the concentration factor for the ductile CA array and dl
k are

the direction cosines of the line connecting the centres of cells m and l (see

Appendix A).

Then the strains at all MD ductile CA cells are scaled so that the average

of the cell strains gives the FE strain:

1

MD

MD
∑

m=1

∆εm
ij(D)(ti+1) = ∆εij(ti+1) (3.22)

The condition of equation (3.21) means that if there is a dead ductile cell

then all neighbouring cells which lie on or near the plane perpendicular to the

direction of the maximum principal FE stress will receive some strain concen-

tration. This condition reflects the strain concentration in material surrounding

a void. The ‘≈’ sign rather than ‘=’ is used in the ‘if’ part of equation (3.21)

because there are only 13 pairs of neighbouring cells with unique combinations

of dl
k (see Appendix A). So it is very unlikely that dl

k · dk(ti) = 1.

Step 4. The stress at time ti+1 at each ductile cell m, σm
ij (ti+1), and the value

of the damage variable, βm(ti+1), are obtained via the solution of the set of

equations of the Rousselier continuous ductile damage model (section 2.1.6 and

Appendix B).

Step 5. The state of each ductile cell m at time ti+1, Υm(D)(ti+1), is obtained

according to equation (3.10).

Step 6. All dead ductile CA cells are reflected into the brittle CA array (section

3.2.2). A special mapping function, MD→B , distributes the array of ductile
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CA cell states, Υm(D)(ti+1), across the brittle CA array. The result is the

“synchronisation” array of the brittle CA cell states, Υm(BD)(ti+1).

Υm(BD)(ti+1) = MD→B

(

Υm̄(D)(ti+1)
)

(3.23)

The subscript “BD” means that each brittle cell m has the state of the ductile

cell occupying the same physical space. The subscript m̄ instead of usual m is

used in the right part of equation (3.23) because MB 6= MD, so m̄ = 1 . . .MD

and m = 1 . . .MB . This change of notation is only used in equations (3.23) and

(3.29).

The space of states of Υm(BD) is the same as of Υm(D), either dead or alive.

The Υm(BD)(ti+1) = dead means that there is a ductile void in the physical

space associated with brittle cell m. So the state of brittle cell m is changed to

deadD to acknowledge this fact. This is expressed by the following equation

Υm(B)(ti+1) =































deadD if Υm(BD)(ti+1) = dead ∧
(

Υm(B)(ti) = alive ∨
Υm(B)(ti) = aliveC

)

Υm(B)(ti) otherwise

(3.24)

The work of mapping function MD→B is illustrated in Figures 3.4.a and

3.4.b.
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Υm(D)(ti+1)→ Υm(BD)(ti+1)

Υm(B)(ti+1)→ Υm(DB)(ti+1)

a. Ductile (in) b. Brittle (out/in) c. Ductile (out)

Figure 3.4: Illustration of the mapping operations, MD→B and MB→D .

Figure 3.4.a shows a two-dimensional slice of Υm(D)(ti+1). Dead cells are

grey and the white ones are alive. Figure 3.4.b shows a two-dimensional slice
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of Υm(BD)(ti+1). It is easy to see that the locations of groups of grey cells

in Υm(BD)(ti+1) are close to locations of grey cells in Υm(D)(ti+1). Because

of the discrete nature of the CA space, the dead cells in Υm(BD)(ti+1) will

occupy exactly the same physical space as the dead cells in Υm(D)(ti+1) only if

the number of cells per linear brittle CA dimension, 3
√

MB , is divisible by the

number of cells per linear ductile CA dimension, 3
√

MD:

mod 3

√

MB

MD
= 0 (3.25)

In the example shown in Figures 3.4.a and 3.4.b 3
√

MB = 13 and 3
√

MD = 5,

so the condition of equation (3.25) does not hold. Therefore the locations of

dead (grey) cells in physical space in Υm(D)(ti+1) and in Υm(BD)(ti+1) are only

close to each other, but not identical.

Step 7. This step is the brittle CA analogue for the ductile CA (Step 3).

The maximum principal stress in each brittle CA cell m at time ti+1, σm
I (ti),

is calculated. The following criteria are used:

∀m σm
I (ti) = σI(ti) (3.26)

∀m : Υm(B)(ti) = deadB : if dl
k · dk(ti) ≈ 1 then σl

I(ti) = cB · σI(ti) (3.27)

∀m : Υm(B)(ti) = deadD : if dl
k · dk(ti) ≈ 1 then σl

I(ti) = cD · σI(ti) (3.28)

where cB > 1 is the concentration factor for the brittle CA array.

The meaning of equations (3.27) and (3.28) for the brittle CA array is similar

to that of equation (3.21) for the ductile CA array (Step 3).

Step 8. This step is the brittle CA analogue for the ductile CA (Step 5).

The state of each brittle cell m at time ti+1, Υm(B)(ti+1), is obtained ac-

cording to equation (3.12).

Step 9. This step is the brittle CA analogue for the ductile CA (Step 6).

All dead brittle CA cells are reflected into the ductile CA array. A spe-

cial mapping function, MB→D , distributes the array of brittle CA cell states,

Υm(B)(ti+1), across the ductile CA array. The result is the “synchronisation”

array of the ductile CA cell states, Υm(DB)(ti+1).

Υm̄(DB)(ti+1) = MB→D

(

Υm(B)(ti+1)
)

(3.29)
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The subscript “DB” means that each ductile cell m̄ has the state of the brittle

cell occupying the same physical space. The subscript m̄ instead of usual m is

used in the left part of equation (3.29) because MB 6= MD, so m̄ = 1 . . .MD

and m = 1 . . .MB . This change of notation is used only in equations (3.29) and

(3.23).

The space of states of Υm(DB) is the same as of Υm(D), either dead or alive.

The Υm(DB)(ti+1) = dead means that there is a brittle crack in the physical

space associated with ductile cell m. So the state of ductile cell m is changed

to dead to acknowledge this fact. This is expressed by the following equation

Υm(D)(ti+1) =







dead if Υm(DB)(ti+1) = dead ∧ Υm(D)(ti) = alive

Υm(D)(ti) otherwise
(3.30)

In contrast with the brittle CA array, no special cell state is created in the

ductile CA to distinguish between the dead ductile cells due to the ductile failure

mode and those made dead artificially for synchronisation (equations (3.24) and

(3.30)). So the percentage of brittle phase can only be calculated via the brittle

CA.

The operation of mapping function MB→D is illustrated in Figures 3.4.b and

3.4.c.

It is important to note that although each of the two mapping functions,

MD→B and MB→D, reflects the state of one CA array onto the state of another

CA array only approximately, mapping errors do not accumulate. As shown

in Figure 3.4 the sequential application of both mapping operations produces

a cell state array identical to the initial one. It is easy to see that Figures

3.4.a and 3.4.c are identical. This property of mapping functions can be written

symbolically as follows

Υm(D)(ti+1) = MB→D

(

MD→B

(

Υm(D)(ti+1)
))

(3.31)

Step 10. All dead ductile cells receive zero stress:

∀m : Υm(D)(ti+1) = dead σm
ij (ti+1) = 0. (3.32)

Step 11. The FE stress at time ti+1, σij(ti+1) is calculated as

σij(ti+1) =
1

MD

∑

m

σm
ij (ti+1). (3.33)
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So the stress at the FE integration point is the average of the stresses of all

ductile CA cells, including the dead cells.

Step 12. The FE solution-dependent variables at time ti+1, Yk(ti+1), are cal-

culated according to equations (3.17), (3.18) and (3.19).

Step 13. The FE stress tensor and solution-dependent variables at time ti+1,

σij(ti+1) and Yk(ti+1), are returned by the VUMAT subroutine to the Abaqus

solver.

Step 13 completes the cycle.

3.2.5 Problems

1. High computational costs.

The running times of the full CAFE model are two – three orders of magni-

tude smaller comparing with the pure finite element model where each ductile

(or brittle) CA cell is substituted by a finite element of equal size. From this

point of view the CAFE model is very fast.

However, a typical simulation time for a full 3D Charpy impact test is days

rather than hours (see section 4.1.3). This is because the integration of the

Rousselier damage model (Step 4, page 49) has to be performed for each ductile

cell. The system of two nonlinear equations is solved in this step using Newton’s

iterative method (Appendix B). This is a relatively time-consuming operation.

2. Loss of precision due to averaging.

As is shown in Appendix B the elastic strain tensor, εe
ij , which is used in

equation (B.8) and is updated according to equation (B.56), has to be stored

from one time increment to another throughout the analysis. The elastic strains

are typically very small for steels, therefore the components of εe
ij must be cal-

culated with high precision. A small change in εe
ij will lead to a very significant

change of the Rousselier model response (σij and β).

However, the maintenance of high precision of εe
ij is difficult due to a simplis-

tic strain redistribution criterion (Step 3, page 49) and due to stress averaging

(Step 11, page 52).
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Each ductile cell will have a unique strain history due to a unique, randomly

assigned, initial void volume fraction, fm
0 . A ductile cell m should theoretically

receive the strain increment at time ti+1, ∆εm
ij(D)(ti+1), based on the stress

at this cell in the previous time increment, ti, σm
ij (ti). However Steps 11 of

increment ti and Step 3 of the next time increment, ti+1, effectively result in

the value of ∆εm
ij(D)(ti+1) being based on the averaged (macro or finite element)

stress. This strain increment might be quite far from the “true” strain increment

for cell m. ∆εm
ij(D)(ti+1) directly affects εe

ij for cell m, as expressed by equation

(B.56). As a result εe
ij might not be calculated accurately.

The greater the dissimilarity between the deformation histories of two neigh-

bouring ductile cell (related to a dissimilarity of f0 for these cells), the further

εe
ij will be from the “true” value. In its extreme this loss of precision results in

εe
ij values which are so far from the accurate ones that the solution of the system

of equations (B.1) – (B.7) is meaningless (e.g. negative ∆σeq) or it cannot be

found at all. The analysis will terminate at this stage.

The probability of encountering this problem obviously increases with the

number of finite elements in the model. For example this problem was never

encountered during the CAFE simulation of a single-FE model (sections 4.1.1

and 4.1.2). However it happened on several occasions during the Charpy test

modelling, where the CAFE model included 900 finite elements (section 4.1.3).

A simplified CAFE model is proposed which aims to solve the above prob-

lems.

3.3 The simplified model

The general structure of the simplified CAFE model is shown in Figure 3.5.

The major difference between the full and the simplified models is that the

Rousselier model integration in the latter is performed at the finite element level.

The damage variable, β(ti+1), is given to the ductile CA array in the simplified

model instead of the strain increment tensor, ∆εij(ti+1). Accordingly only the

solution-dependent state variables are returned to the FE from the ductile CA

array, as the new macro stress tensor, σij(ti+1), is calculated already at the FE
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FE Ductile CA

β(ti+1), σij(ti)→
← Ya(ti+1)

↓ Υm(D)(ti+1)

Υm(B)(ti+1) ↑

Brittle CA

Figure 3.5: Flow of information between the three parts of the simplified CAFE

model.

level (Figures 3.3 and 3.5). All other differences between the two models are

the consequences of this major one.

The critical value of the damage variable is now a randomly assigned cell

property, Λ1
m(D) = βm

F . So βm
F instead of βF is used in equation (3.10) for the

simplified model. The other properties of the ductile CA array are as described

in section 3.2.1.

The brittle CA array and the FE part are used exactly as in the full model

(sections 3.2.2 and 3.2.3).

3.3.1 How the model works

Below is the sequence of operations performed at each time increment for each

FE and the corresponding two CA arrays of the CAFE model.

Step 1. The same as Step 4 of the full model but performed at the FE level.

The damage variable at time ti, β(ti+1), at the FE integration point is given by

the Abaqus solver to the VUMAT subroutine.

Step 2. The same as for the full model.

Step 3. The same as for the full model but applied to the damage variable.
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The damage variable at each ductile CA cell m at time ti+1, βm(ti+1), is

calculated. The following criteria are used:

∀m βm(ti+1) = β(ti+1) (3.34)

∀m : Υm(D)(ti) = dead:

if dl
k · dk(ti) ≈ 1 then βl(ti+1) = cD · β(ti+1) (3.35)

No scaling is performed as opposed to the full model.

Step 4. Not present in the simplified model.

Step 5. – Step 9. The same as for the full model.

Step 10. – Step 11. Not present in the simplified model.

Step 12. The same as for the full model.

Step 13. The same as for the full model but only solution-dependent variables

at time ti+1, Ya(ti+1), are returned by the VUMAT subroutine to the Abaqus

solver.

Step 13 completes the cycle.

It is easy to see that in the simplified model the roles of the ductile and the

brittle CA arrays are very similar as opposed to the full model (section 3.2.4).

In the full model the ductile CA array is used for the calculation of material

constitutive response and for the simulation of the fracture propagation while

the brittle CA array is only used to simulate fracture propagation. In the

simplified model both the brittle and the ductile CA arrays are used only for

the simulation of the fracture propagation at each CA scale. The material

constitutive response is calculated at the FE level.

A significant reduction of computational time is thus achieved. Also there

is no averaging in the simplified model since Step 11 is not present. So the

accuracy of εe
ij is not reduced.
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3.4 Important properties

Both the full and the simplified CAFE models have the following two important

properties.

1. In this particular realisation of a CAFE generalisation finite elements with

a single integration point (C3D8R) have been used. As a consequence there are

no stress or strain gradients across finite elements. Therefore mapping proce-

dures such as triangulation (Das, 2002) or the Wigner-Seitz algorithm (Raabe

and Becker, 2000) need not be applied to decide which CA cells fall under the

influence of a particular integration point.

This property makes the present CAFE models fast. However, care must

be taken to ensure that finite element sizes are appropriate for regions of high

strain gradients as the accuracy of a single integration point finite element is

inevitably not as good as that of a finite element with several integration points.

2. Neither rotation nor deformation of a finite element are transferred to the

corresponding CAs. This is a very important property of the present CAFE

models. As a consequence the fracture propagation path can only be visualised

in the initial finite element configuration. This was a conscious decision.

The present work aims to model and understand the behaviour of a macro-

scopic sample of material based on micromechanics of fracture. If, however,

the emphasis is shifted towards the modelling and understanding of the frac-

ture at the microscale, then all CA arrays have to be rotated and deformed

using the deformation gradient tensor at the corresponding integration point

(Das, 2002). In this case the exact locations of all cells in physical space will

be known throughout the analysis and the fracture propagation path can be

visualised on a deformed mesh.

3.5 The list of model parameters

To complete this chapter, the full list of the parameters for both CAFE models

is shown below.

1. MD – the total number of cells in the ductile CA.
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2. MB – the total number of cells in the brittle CA.

3. a probability density function, f(f0), for the full model and f(βF), for the

simplified model.

4. η – a fraction of the brittle CA cells to have a grain boundary carbide.

5. a probability density function f(dg).

6. a probability density function f(α).

7. Xmax
(D) – the maximum number of dead cells allowed per ductile CA.

8. Xmax
(B) – the maximum number of dead cells allowed per brittle CA.

9. cD – the concentration factor for the ductile CA array.

10. cB – the concentration factor for the brittle CA array.



Chapter 4

Results

All results in this Chapter were obtained with the following soft- and hard-

ware. The VUMAT subroutine was written in FORTRAN 95, and compiled and

linked with Compaq Visual Fortran compiler, version 6.1 (Compaq, 1999). The

Abaqus/Explicit version 6.2-1 code was used. The platform used was a Pen-

tium III, 1 GHz PC run under Windows 2000 operating system. The amount of

operating memory used was approximately 42 MB for the examples in sections

4.1.1 and 4.1.2 and 50 MB for the examples in sections 4.1.3 and 4.2.1.

All examples in this Chapter illustrate the ability of the present CAFE mod-

els, both the full and the simplified, to simulate fracture propagation typical of

that in a thermomechanically control rolled (TMCR) microalloyed steel. Sec-

tions 4.1.1 and 4.1.2 illustrate some important features of the full CAFE model

by simulating the fracture propagation in a typical TMCR steel. Fracture of a

particular TMCR steel is modelled in sections 4.1.3 and 4.2.1.

4.1 The full CAFE model

4.1.1 Single FE, tension – compression

This simple example is used to demonstrate the behaviour of the full CAFE

model.

The model consists of a single cubic 1mm×1mm×1mm finite element. The

initial shape of the finite element (dashed lines) and the boundary conditions

59
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(arrows) are shown in Figure 4.1.a.
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Figure 4.1: A single finite element model under alternating uniaxial tension and

compression.

The vertical displacement of the four bottom nodes is zero and for the four

top nodes it is described by the function u2(t) shown in Figure 4.1.b.

The material plastic properties are described by the power hardening law of

the form:

σY = σY0

(

εp
eq

3G

σY0
+ 1

)n

(4.1)

where σY0 is the first yield stress and n is the hardening exponent.

The simulation was performed at T = 20◦C. For this temperature the values

σY0 = 447 MPa and n = 0.0575 were chosen based on data shown in Figure

4.11. The Young’s modulus and the Poisson ratio are E = 2 × 105 MPa and

ν = 0.3 respectively. The hardening curve is shown in Figure 4.2.

A 5×5×5 cell ductile (MD = 125) and a 20×20×20 cell brittle (MB = 8000)

CA array were created. Thus the ductile damage cell size is LD = 1/5 = 0.2 mm

and the brittle damage cell is LB = 1/20 = 0.05 mm.

A two-parameter Weibull distribution was used to simulate the distribution

of the initial void volume fraction, f0. The shape parameter was taken as

Wβ = 2 and the scale parameter was taken as Wη = 2.82× 10−4. The resulting

histogram of f0 is shown in Figure 4.3.

The fracture stress value, σF, was assigned to each brittle CA cell based on

the normal distribution with σ̄F = 1.9×103 MPa and STD(σF) = 3.6×102 Mpa.

The resulting histogram of σF is shown in Figure 4.4.
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Figure 4.2: Yield stress, σY(εp
eq).
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Figure 4.3: The initial void volume fraction histogram.

As this example does not simulate the behaviour of any particular steel, but

rather illustrates the CAFE model behaviour, the actual numerical values of f0

and σF assigned to each ductile or brittle cell are not very important, providing

they lie within the reasonable ranges of these parameters for TMCR steels.

Davis (2003) reported that no large second phase particles were observed in the

fracture surfaces of the broken tensile and Charpy samples of a TMCR material



62 CHAPTER 4. RESULTS

500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

60

70

Mean =1.90e+003

Median =1.91e+003

Mode =1.92e+003

STD =3.59e+002

Max =3.19e+003

Min =6.19e+002

 σ
F
, MPa

N
um

be
r 

of
 c

el
ls

Figure 4.4: The fracture stress histogram.

described in section 4.1.3. However, if f0 = 0, then the Rousselier model cannot

simulate material softening, equations (B.1) – (B.7). Even if f0 6= 0 but very

small, then the softening behaviour predicted by the model is too slow, and the

strains to fracture are unrealistically high. Therefore the author had to choose

a reasonable value of f̄0 based on his previous experience, and that of other

people, of modelling ductile fracture (Shterenlikht et al., 2003; Andrews et al.,

2002; Burstow, 1998)

To further simplify this example no grain size, dg , or grain orientation, α,

distribution is used. Also for reasons of simplicity η = 1, so that brittle fracture

can initiate at any brittle CA cell.

The values for other model parameters used in this example (section 3.5)

are cD = 1.4, cB = 1.6, Xmax
(D) = M

2/3
D and Xmax

(B) = M
2/3
B .

There is little guidance as to how to choose the values for the above four

parameters. We can assume that cB > cD as the strain concentration ahead of

a crack is higher than at the surface of a void. On the other hand M 2/3 is the

number of cells in a square section of a cubic CA array. So Xmax = M2/3 is

chosen on the assumption that a FE will fail when a planar crack, perpendicular

to one of the three basis directions, crosses either of the two CA arrays.
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The parameters of the Rousselier damage model (section 2.1.6) are: D = 3,

σ1 = 500 MPa and βF = 8. These parameters are tuned on the CAFE modelling

of the Charpy test at the upper shelf (section 4.1.3).

The computation of this example took less than 10 minutes.

The modelling results are shown in Figures 4.5 – 4.9. Of these Figures 4.5 –

4.7 present results on the macro (FE) scale. The micro (CA) scale outcome of

the simulation is shown in Figures 4.8 and 4.9.

Figure 4.5.a shows the vertical stress against time, σ22(t). It is easy to see

that the failure of the finite element occurred before the second change of the

direction of applied displacement (Figure 4.1.b). Accordingly the shape of the

finite element at the end of the simulation is that of a compressed element, as

shown in Figure 4.1.a (solid lines).
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Figure 4.5: A single finite element model under alternating uniaxial tension and

compression.

The plot of von Mises equivalent stress against time, σeq(t), is shown in



64 CHAPTER 4. RESULTS

Figure 4.5.b. Two points worth noting are the time delay at t = 4 × 10−3 sec

associated with elastic unloading and loading in the opposite direction, and the

difference in the maximum σeq values in tension and compression. The maxi-

mum σeq in tension and compression are 585 MPa and 604 MPa respectively.

This difference is due to the Rousselier model depending on the sign of the

mean stress, σm (equation (2.16), section 2.1.6). This property of the Rousse-

lier model is in a good agreement with various experimental observations that

the positive σm values cause much greater damage than negative values (e.g.

Bridgman, 1952).

Elastic unloading and loading can be seen also in the plot of equivalent

plastic strain against time, εp
eq(t), shown in Figure 4.5.c.

The equivalent plastic strain – equivalent stress plot, σeq(εp
eq), is shown in

Figure 4.5.d. It is easy to see, by comparing this plot with that of σeq(t) shown

in Figure 4.5.b, that damage indeed accumulates much slower (in terms of εp
eq)

in compression than in tension. For ∆εp
eq = 0.6, from εp

eq = 0.4 to εp
eq ≈ 1, σeq

remains virtually constant thus indicating that there is no loss of load bearing

capacity during this large strain increment.

The evolution of three finite element solution-dependent state variables,

Y1, Y2 and Y3 is shown in Figures 4.6 and 4.7.
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Figure 4.6: A single finite element model under alternating uniaxial tension and

compression.

The state of the finite element, Y1, changed from alive (1) to dead (0) at

the moment when its integrity, Y2, reached zero (Figures 4.6.a and 4.6.b). Each
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step in Figure 4.6.b is associated with the failure of one or more cells in either

of the CA arrays. These steps are also visible in Figures 4.5.a, 4.5.b and 4.5.d.

The evolution of the brittle phase per FE, Y3, is shown in Figure 4.7. It

is important to note that the brittle phase can decrease during the simulation

according to equation 3.17. This is what happened in the present example. The

brittle phase in the end of the analysis is only Y3 = 6.25 × 10−4 or 0.06%. In

practise such fracture would be routinely called a 100% ductile.
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Figure 4.7: Brittle phase per FE, Y3(εp
eq).

The state of the brittle CA array at the end of the simulation is shown

in Figure 4.8. As was said in section 3.4 the visualisation of the fracture on

a CA scale in the present model is only possible in the initial (undeformed)

configuration. Therefore the bounding box in Figure 4.8 represents the initial

shape of the finite element.

All results on the CA scale in this and the following examples were generated

with the EnSight visualisation software (CEI, 2002).

All aliveC cells are transparent and only the deadB (black) and deadD

(grey) cells are shown. In fact there is only one deadB cell and all other dead

cells are deadD. All deadD cells are grouped in 4×4×4 = 64 cell cubes because

there are 64 brittle CA cells per each ductile cell (MB/MD = 8000/125 = 64).

There is a tendency for the dead ductile cells to form clusters in XZ planes,

which are the planes perpendicular to the direction of the maximum principal

stress. However this tendency is quite weak and can only be seem in the bottom



66 CHAPTER 4. RESULTS

0.5
0.500006
0.5 0.750001

X-Axis

0.750007

1

Y-Axis

0.750001
1.25

1.00001

1.5
0.500006

1.25001

Z-Axis
1

0.750007

1.50001
0.50.5

Y-Axis1.00001

0.750001

1.25

X-Axis

1

1.25001

0.750001
1.25

1.50001
1.5

1.5

1
Z-Axis

1.25

1.5

X

Y

Z

Figure 4.8: The state of the brittle CA array at the end of the simulation,

εp
eq = 1.38. Grey cells are Υm(B) = deadD and black cells are Υm(B) = deadB.

layer of the dead ductile cells. This suggests that the concentration factor for

the ductile CA array, cD = 1.4, used in this analysis is not high enough.

On the other hand there is experimental evidence that there might be many

voids in the vicinity of the main ductile crack which never coalesce with other

voids or with the main crack (Puttick, 1959). Taking these observations into

account the simulation result shown in Figure 4.8 seems reasonable.

The sequence of eight snapshots of the brittle CA array throughout the

simulation is shown in Figure 4.9.

The fracture process started at εp
eq = 0.38 when one ductile CA cell became

dead. Mapping function MD→B (Step 6, page 49) then translated the location

of this cell into the locations of the corresponding 64 brittle cells which became

deadD. These cells constitute the grey block in Figure 4.9.b. Figure 4.10 shows

another projection of the same state of the brittle CA array as Figure 4.9.b.

The locations of the deadD cells are more clear in Figure 4.10. There are

4 × 4 × 5 = 80 cells adjacent to the deadD cells which lie on the XZ planes.

These are the cells which satisfy the condition of equation (3.28), i.e. these

cells will be given the maximum principal stress higher than the value for the
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Figure 4.9: Damage propagation across the FE.

finite element integration point, σl
I(ti) = cD · σI(ti). Because of the self-closing

boundary condition (Figure 3.2, page 40) the black cell in Figure 4.10 is one of
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these cells.
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Figure 4.10: The state of the brittle CA array at εp
eq = 0.38.

At εp
eq = 0.38, σI = 576 MPa, (in this example σI = σ22, Figure 4.5.a)

therefore σl
I = 1.4 × 576 = 806 MPa. The data from Figure 4.4 shows that

there only 5 brittle CA cells with σF ≤ 806 MPa. Accidentally one of these

five happened to be the black cell in Figure 4.10. So this cell became deadB in

the same time increment as the first ductile cell became dead. Accordingly the

brittle phase at this moment was 1/64 = 0.0156 (Figure 4.7).

The data for σF (Figure 4.4) and σ22 = σI (Figure 4.5.a) help to explain

why there is only one deadB brittle CA cell at the end of the simulation.

The maximum σI in the analysis is σI = 604 (Figure 4.5.a). Therefore the

maximum σl
I is σl

I = 1.4 × 604 = 845 MPa. However Figure 4.4 shows that

there are only 7 brittle CA cells with σF ≤ 845 MPa. Thus the probability that

max(σm
I ) ≥ σF for a brittle CA cell m is only 7/8000 = 8.75× 10−4.

The above discussion reveals the importance of the whole fracture stress

distribution rather than its single characteristics (mean, median or mode) in

transitional ductile – brittle fractures. It shows that transitional behaviour is

only possible if there is a reasonable scatter of the fracture stress values. If there

is no scatter and all brittle CA cells receive the same fracture stress, then the

resulting fracture will be either 100% brittle or 100% ductile, because all brittle

CA cells will behave as one.

The importance of the fracture stress is one of the major issues of the present

work and it will be illustrated in greater detail in the next examples.
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4.1.2 Single FE, forward tension – simulation of scatter

In this example the capacity of the full CAFE model to simulate the scatter

at the transitional temperatures is illustrated. Similarly to the previous exam-

ple (section 4.1.1), material properties were chosen to qualitatively reproduce

fracture propagation in a TMCR steel.

The model consists of a single cubic 1mm × 1mm × 1mm finite element

(Figure 4.1, dashed lines) under uniaxial tension.

The power hardening law of equation (4.1) was used. The first yield stress,

σY0, and the hardening exponent, n, are temperature-dependent as shown in

Figure 4.11.
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Figure 4.11: Temperature dependence of material properties. Based on the

experimental data provided by Davis (2003).

As in the previous example (section 4.1.1) E = 2× 105 MPa and ν = 0.3.

A 5×5×5 cell ductile (MD = 125) and a 10×10×10 cell brittle (MB = 1000)

CA array were created. Thus the ductile damage cell size is LD = 1/5 = 0.2 mm

and the brittle damage cell is LB = 1/10 = 0.1 mm.

As in the previous example a two-parameter Weibull distribution was used

to simulate the distribution of the initial void volume fraction, f0. The shape

parameter was taken as Wβ = 2 and the scale parameter was taken as Wη =

2.82 × 10−4. The resulting histogram of f0 in each of the simulations of this

example was similar to that shown in Figure 4.3.

The fracture stress value, σF, was assigned to each brittle CA cell based on

the normal distribution with σ̄F = 1.9×103 MPa and STD(σF) = 5×102 MPa.
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An example of the resulting histogram of σF is shown in Figure 4.12.
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Figure 4.12: The fracture stress histogram.

The values for other model parameters are η = 1, cD = 1.4, cB = 1.7,

Xmax
(D) = M

2/3
D and Xmax

(B) = M
2/3
B . As in the previous example the parameters

of the Rousselier damage model are D = 3, σ1 = 500 MPa and βF = 8.

The simulations were performed at six temperatures, from T = −196◦C to

T = 0◦C, three runs at each temperature.

All simulations of this example took less than 4 minutes.

The modelling results are shown in Figures 4.13 – 4.17. Of these, Figures

4.13 – 4.16 present results on the macro (FE) scale. The micro (CA) scale

results of the simulations are shown in Figure 4.17.

Figure 4.13 shows the evolution of the equivalent plastic stress, σeq(εp
eq),

during the simulation for all 18 runs.

The scatter of εp
eq to failure is very low at −196◦C, higher at −175◦C, the

highest at −150◦C, lower at −100◦C and very low again at −50◦C and at

0◦C. This Figure 4.13 demonstrates that the full CAFE model can generate the

scatter in terms of εp
eq to failure. And the level of this scatter is temperature-

dependent.

Figures 4.14 and 4.15 show the evolution curves of two of the FE solution-
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Figure 4.13: Equivalent von Mises stress, σeq(εp
eq).

dependent variables: integrity, Y2(εp
eq), and the brittle phase, Y3(εp

eq).

It is easy to see in Figure 4.14 that the diversity of the shapes of the three

Y2(εp
eq) curves at each temperature is maximal at −150◦C and decreasing to-

wards−196◦C and towards 0◦C. The three Y2(εp
eq) curves at −196◦C (dark blue)

lie virtually on top of each other. However the three curves at 0◦C (black) can

be easily distinguished one from another. Thus the scatter in terms of Y2(εp
eq)

is also temperature-dependent.

Figure 4.15 shows the evolution of the fraction of the brittle phase per FE

during the simulation, Y3(εp
eq). The curves at −196◦C and at −175◦C (dark and

light blue) are not visible because in all six simulations Y3 = 1 from the onset

of the fracture propagation until the failure of the FE (compare with Figures

4.13 and 4.14).

The scatter in terms of the difference in curve shapes at each temperature is

temperature-dependent. The six curves, three at −196◦C and three at −175◦C,

lie on top of each other. However for all other temperatures the shapes the
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Figure 4.14: FE integrity, Y2(εp
eq).

curves are distinctly different.

The values of the brittle phase at the point of a FE failure are not very clear

from Figure 4.15. They are shown separately in Figure 4.16 which is a typical

illustration of the transitional ductile – brittle fracture behaviour.

In this example the lower shelf temperatures are below −175◦C, the upper

shelf is above −50◦C and the transitional temperatures are from −150◦C to

−100◦C. The level of scatter in the transitional region is higher than in the

lower or in the upper shelf. It is interesting to note that the transition from the

lower shelf is quite sharp, whereas the transition from the upper shelf is much

smoother.

As in the example of section 4.1.1 the results of this section are rather qual-

itative than quantitative. Although the model is very capable of simulating the

transitional behaviour, the transitional temperature range might be shifted from

that obtained experimentally. This is primarily due to difficulties of finding the

proper values for cD, cB , Xmax
(D) , Xmax

(B) , Wβ and Wη (for the distribution of f0)
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Figure 4.15: Brittle phase per FE, Y3(εp
eq).
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Figure 4.16: The fraction of the brittle phase at the end of the simulation.

and STD(σF). This issue is discussed in greater detail in section 4.2.1. On the

other hand there is no necking in a single FE model. Therefore the stress triax-

iality in this and the previous examples is very low, unlike in any real fracture

test.
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Figure 4.17 shows the state of the brittle CA array at the point of FE

failure at six temperatures. The results of two of the three simulations at each

temperature are shown. As in Figures 4.8 and 4.9 the black cells are deadB and

the grey ones are deadD. In this example each ductile cell occupies the space

of 2× 2× 2 = 8 brittle cells since MB/MD = 1000/125 = 8.

A major brittle fracture plane is obvious at −196◦C (Figures 4.17.a and

4.17.a) and at −175◦C (Figures 4.17.c and 4.17.d). However in all four cases

there are several deadB cells apart from the main crack. These cells represent

1.50001
0.50.5

Y-Axis

1.25001

1.00001

0.750001

0.750005

X-Axis

0.500005

0.750001 1

0.50.5

1.25

0.750001

Z-Axis
1

X-Axis

1.5

0.750001 1

1.50001

1.25001

1.25

Y-Axis1.00001

1.25

0.750005

1
Z-Axis 1.5

0.500005

1.5

1.25

Y

X
1.5

Z

1.50001
0.50.5

1.25001

Y-Axis

0.750001

1.00001

X-Axis

0.750005

1

0.500005

0.750001

0.5

1.25

0.5 0.750001

1.5
1.50001

X-Axis
1

1.25001

Z-Axis

Y-Axis

1

1.00001

0.750001 1.25

0.750005

1.5
0.500005

1.25

1
Z-Axis

Y

1.5

1.25

XZ

1.5

a. −196◦C b. −196◦C

1.50001
0.5

Y-Axis

0.5

1.25001

0.750001
X-Axis

1.00001

1

0.750005

0.500005

1.25

0.50.5

1.5

0.750001

1.50001

X-Axis

1.25001

Y-Axis

1

1.00001

1.25

0.750001

0.750005

1.5
0.500005

0.750001

Z-Axis
1

Y

X

1
Z-Axis

1.25

Z

1.25

1.5

1.5

X-Axis

1.5
1.25

0.500005

1
0.750001

0.50.500005
0.5

0.750005

0.750005

Y-Axis1.00001

0.750001

Y-Axis1.00001

1.25001

Z-Axis

1.25001

1

1.50001
1.5

1.25
X-Axis
1

1.50001

0.750001
0.50.5

1.25

0.750001

1.5

1
Z-Axis

1.25

X

1.5

Y

Z

c. −175◦C d. −175◦C

1.50001
0.50.5

1.25001

0.750001

Y-Axis

X-Axis

0.750001

1.00001

1

0.750005

1.25

Z-Axis
1

0.500005

1.5

0.50.5

1.50001

1.25

0.750001

1.25001

0.750001

X-Axis

1

Y-Axis1.00001

1.5

1.25

0.750005
1

Z-Axis

1.5
0.500005

1.25
Y

1.5

X

Z

Y-Axis

0.500005

0.750005

1.00001

0.5

1.25001

1.50001

0.5

0.50.5

0.750001

0.750001

X-Axis

X-Axis

1

1

0.750001

0.750001

1.25

1.25

1.5

Y-Axis

0.500005

0.750005

1.5

1.00001

1.25001

1.50001

Z-Axis
1

1
Z-Axis

1.25

1.25

Y

X
1.5

1.5

Z

e. −150◦C f. −150◦C

Figure 4.17: Damage propagation across the FE. Grey cells are Υm(B) = deadD

and black cells are Υm(B) = deadB. (Continued on the next page).
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Figure 4.17: Continued.

the microcracks which were arrested due to a drop of applied stress or due to a

very high fracture stress in all neighbourhood grains (cells). These microcracks

have been observed in experiments (Lin et al., 1987; Nohava et al., 2002). The

overall similarity between these four brittle CA states is clear. That is what one

would expect after seeing the results in Figures 4.13 – 4.16.

The two brittle CA states at −150◦C (Figures 4.17.e and 4.17.f) are quite

different. There is a large brittle crack in Figure 4.17.e; however it did not cross

the whole of the FE and the final failure was due to ductile fracture. In contrast,

the brittle cleavage plane crossed virtually the whole of the FE in Figure 4.17.f
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and only two ductile cells failed. Consequently the brittle phase for the state

shown in Figure 4.17.e is Y3 = 0.4 and for the state shown in Figure 4.17.f it is

Y3 = 0.85 (see Figure 4.16).

With temperatures increasing to −100◦C (Figures 4.17.g and 4.17.h), −50◦C

(Figures 4.17.i and 4.17.j), and 0◦C (Figures 4.17.k and 4.17.l), one can see an

increasing number of deadD cells. The difference between the states at each

temperature is insignificant.

Thus the results on the micro (CA) scale (Figure 4.17) are complementary

to those of the macro (FE) scale (Figures 4.13 – 4.16).

Finally a special transition temperature diagram can be constructed by com-

bining the data from Figures 4.11.a, 4.12, 4.13 and 4.16. This diagram is shown

in Figure 4.18.
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Figure 4.18: Transition temperature diagram.

This diagram illustrates schematically the influence of the fracture stress

distribution on the transition temperature range.

The fracture stress distribution, assumed to be independent of temperature,
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is shown on the left. The maximum principal stress line, σI(T ), is drawn slightly

higher than cB × σY 0(T ) because the data in Figure 4.13 shows that brittle

fracture can happen after the onset of plasticity, so σI > σY 0. The transition

range obtained from Figure 4.16 is approximately from −160◦C to −90◦C. By

establishing the intersection points of the transition temperature limits with the

σI(T ) curve, the transition temperature range of σF can be obtained: σF(US)

and σF(LS).

The number of cells which have the fracture stress lower than the upper

shelf limit, σF(US), is so small that it is very unlikely that many brittle cells m

with σm
F < σF(US) will be located near the fracture propagation path. Although

some brittle cells with particularly low σF will still fracture even at the upper

shelf temperatures (see e.g. Figures 4.17.i – 4.17.l), the number of these cells is

so small that they do not affect the fracture process significantly.

On the other hand the lower shelf limit, σF(LS), is so high that it is very

likely that many cells m with σm
F < σF(LS) will be located near the fracture

propagation path.

Thus the number of brittle cells which can fracture is inversely related to

temperature in the transitional region but saturation is reached as temperature

approaches either shelf.

At very low temperatures (the lower shelf) the number of brittle cells which

can fail is so high that all but a few brittle cells located at the fracture propaga-

tion path will fail. Further decrease of temperature results in saturation and no

significant change in fracture behaviour occurs. Similarly, at very high tempe-

ratures (the upper shelf) this number is so small that very few brittle cells will

fail. For all practical purposes this is 100% ductile fracture. The saturation is

thus reached and further increase of temperature does not change the picture.

As both the upper and the lower shelves can be described as “saturation”, the

levels of scatter are small at these temperatures.

The fracture behaviour is different at transitional temperatures. The number

of brittle cells which can fail is now temperature-dependent and the fracture

propagation behaviour is affected by the locations of these cells as well as the

total number of them. So there might be a situation when no suitable brittle

cell is located at a point of highest macro (FE) stress. This will lead to further
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increase of macroscopic stress until the brittle fracture criterion of equation

(3.12) is met at a point where a suitable brittle cell is located. However, in the

next simulation the locations of the brittle cells which could fail will be different

and thus the whole of the fracture propagation path will change. This is the

reason for the high scatter in the transitional temperature range.

The diagram in Figure 4.18 suggests that there are two important parameters

of the fracture stress distribution, σF(LS) and σF(US). If we assume that these are

true material parameters and that they do not change with temperature, then

the diagram will indicate that the increase of the maximum principal stress,

whether due to higher yield stress or due to high stress triaxiality, shifts the

transition temperature range right, towards higher temperatures. There is some

experimental evidence to support this point.

Results presented by Kohout (2001) show that the transition temperatures

for V-notched Charpy samples are higher than for U-notched ones. This happens

because the stresses below the V-notch are higher than below the U-notch.

Hertzberg reproduced results (Hertzberg, 1996, page 389) which show that

the transition temperature range obtained in drop weight (DWTT) and in dy-

namic (DT) tear tests for A541 Class 6 steel is significantly higher than that

recorded with the Charpy test. The reason is that DWTT and DT “may be

considered to be oversized Charpy samples” (Hertzberg, 1996, page 387). As a

consequence there is much higher stress triaxiality in DWTT and DT samples

compared with the Charpy specimen.

Materials which exhibit elevation of the first yield stress with strain rate pro-

duce a transition temperature shift when tested at different strain rates. Results

reproduced by Hertzberg for impact and slow-bend Charpy tests (Hertzberg,

1996, pages 392 and 393) show that the transition temperature range for the

impact Charpy test is higher that for the slow-bend test.

The analysis of the diagram in Figure 4.18 has one very important conclusion.

This is that the whole of the grain size distribution is necessary for proper

simulation of the transitional fracture behaviour. If all grains have the same

grain size, e.g. the mean grain size, then no transitional behaviour is possible, as

the model will show that all cells fail in either ductile or brittle mode, depending

on the simulation temperature.
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Indeed the diagram of Figure 4.18 indicates that the higher the STD(σF),

the wider is the transition temperature range. If STD(σF) is very small, then

the values σF(LS) and σF(US) are very close and the transition range is very

narrow. If STD(σF)=0, which is the case of using a uniform grain size, then

σF(LS) = σF(US) and the width of the transitional region is zero. Effectively the

model in that case can only simulate the upper or the lower shelf behaviour.

The grain size distribution has such an important role in this example be-

cause there are no explicit initiation sites of brittle fracture, or rather every

cell is a potential initiation site as η = 1. However, if η < 1, as in the next

two examples (sections 4.1.3 and 4.2.1), then the distribution of the initiation

sites (fracture stress distribution of aliveC brittle cells) is a key factor affecting

transitional behaviour.

4.1.3 The Charpy test

This example illustrates the simulation of the Charpy impact test with the use

of the full CAFE model.

Figures 4.19 and 4.20 show the meshes of all bodies included in the model.

These are the specimen, the anvils and the BS EN 10045-1 (1990) striker. Only

the first 35 mm of the striker tup is modelled.

A 0.15 friction coefficient is adopted for all contact surfaces.

The full CAFE model is only used in the finite elements located near the

anticipated fracture propagation path (damage zone). The damage zone consists

of 900 C3D8R elements (HKS, 2001) which are shown in Figure 4.21. Majority of

these are 1mm×1mm×1mm cubic elements. However slightly smaller elements

are used near the root of the notch.

5× 5× 5 cell ductile (MD = 125) and 10× 10× 10 cell brittle (MB = 1000)

CA arrays were created for each finite element in the damage zone. Thus the

ductile damage cell size is LD ≈ 1/5 = 0.2 mm and the brittle damage cell is

LB ≈ 1/10 = 0.1 mm. The full CAFE model will therefore have 112500 ductile

and 900000 brittle CA cells.

The material simulated in this example is a laboratory control rolled TMCR

steel. The data for this steel is obtained from published papers and by pri-

vate communication (Bhattacharjee and Davis, 2002; Bhattacharjee et al., 2003;
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Figure 4.19: The finite element mesh of the Charpy specimen, the anvils and

the striker.

Davis, 2003).

Figure 4.22 shows two typical illustrations of the brittle and the ductile

fracture surfaces obtained on the present TMCR steel. The average spacing

between the larger voids is approximately 100 micron. The average cleavage

facet size is approximately 50 micron. Thus the damage cell sizes used in this

example are roughly two times larger than the microstructural features to which

they are usually related. This was a conscious decision aimed at cutting the

simulation time. The author believes that such discrepancy can be dealt with

appropriately by the present CAFE model, e.g. by assigning the fracture stress

to each brittle cell based on the grain size distribution (section 3.2.2).

The chemical composition of this TMCR steel is shown in Table 4.1.

The rolling process starts at 1120◦C from a 145 mm thick slab and includes
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Figure 4.20: A three-dimensional view of the Charpy test model.
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Figure 4.21: The mesh of the damage zone of the Charpy specimen containing

900 finite elements.

26 passes to a finish roll temperature of 717◦C. The final slab thickness was

approximately 30 mm. Figure 4.23 shows the microstructure of this steel at the
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a. Ductile fracture b. Brittle fracture

Figure 4.22: Typical ductile and brittle fracture surfaces of this TMCR steel.

Figure a. courtesy of Davis (2003), Figure b. is reproduced from Bhattacharjee

and Davis (2002).

Figure 4.23: Microstructure of the TMCR steel. From Bhattacharjee and Davis

(2002).

mid-thickness location, 15 mm below the surface. The grain size distribution at

the mid-thickness plane is shown in Figure 4.24.

Figures 4.23 and 4.24 suggest a duplex distribution. There is an obvious

drop in Figure 4.24 at dg ≈ 1.1 micron which separates the two parts of the
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C Si Mn P S Al Nb V

0.1 0.31 1.42 0.017 0.005 0.046 0.045 0.046

Table 4.1: Chemical composition of the TMCR steel used (weight %). From

Bhattacharjee and Davis (2002).
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Figure 4.24: The 500-bin histogram of the grain size, dg . Data courtesy of Davis

(2003).

histogram. The two parts of the full histogram split at dg = 1.1 micron are

shown in Figures 4.25 and 4.26.

It must be said that Dr C Davis, who provided the raw grain size data

used in the histogram shown in Figure 4.24, suggested that high number of

grains with dg < 1 micron might be a by-product of the measuring technique.

However, it is not obvious what is the minimum reliable grain size (Davis,

2003). For this reason the grain size data was used in this example exactly as

provided without any filtering. Moreover, as will be shown below, grains with

dg ≤ 1.1 micron do not contribute to the fracture propagation due to very high

fracture stresses. Nevertheless, this example demonstrates a useful technique

for simulating duplex grain size distributions.

We shall approximate each part of the full histogram with a separate Weibull
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Figure 4.25: The 15-bin histogram of dg ≤ 1.1 micron.
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Figure 4.26: The 500-bin histogram of dg > 1.1 micron.

distribution based on the mean and the standard deviation values of this part.

The dg ≤ 1.1 micron part of the histogram (Figure 4.25) is simulated with a

Weibull distribution with parameters Wβ = 1.065, Wη = 0.189 and Wγ = 0.52

(“Wl distribution”). The dg > 1.1 micron part of the histogram (Figure 4.26) is
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simulated with a Weibull distribution with parameters Wβ = 1.298, Wη = 5.401

and Wγ = 1.1 (“Wr distribution”).

There are 4087 data points in the full histogram (Figure 4.24), 464 data

points in the dg ≤ 1.1 micron histogram (Figure 4.25) and 3623 data points in

the dg > 1.1 micron histogram (Figure 4.26). Therefore the fraction of cells for

which the grain size will be generated with the Wl distribution is 464/3623 =

0.128. For the rest of the brittle cells the Wr distribution will be used.

The histogram of the brittle CA cell grain sizes generated with the Wl and

the Wr distributions is shown in Figure 4.27.
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Figure 4.27: The 1000-bin histogram of the generated grain size.

It is much smoother that the experimentally obtained histogram shown in

Figure 4.24. This is partly due to a much larger number of cells (900000) than

the number of grains for which size was obtained experimentally (4087). On the

other hand the Weibull distribution is only an approximation of the very com-

plex experimental data. However, statistical characteristics of the histograms

shown in Figures 4.24 and 4.27 are quite similar.

Wu and Davis (2003) reported an effective fracture surface energy of 52 J/m2

for a TMCR steel very similar to that used in this work. This value agrees well

with “typical” surface energy values (Lin et al., 1987).
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Taking this value as the effective surface energy of a ferrite – ferrite interface,

γff , we can generate the fracture stress values using the grain size histogram

(Figure 4.27) according to equation (2.26), page 28. The histogram of the

generated brittle CA cell fracture stress is shown in Figure 4.28.
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Figure 4.28: The 1000-bin histogram of the generated fracture stress, σF.

As in the example of section 4.1.1 a two-parameter Weibull probability den-

sity function was used to simulate the distribution of the initial void volume

fraction, f0. The shape parameter was taken as Wβ = 2 and the scale parame-

ter was taken as Wη = 2.82× 10−4. The resulting histogram of f0 is shown in

Figure 4.29.

The value of the misorientation threshold, θF, is chosen based on the experi-

mental data reported by Bhattacharjee and Davis (2002). The authors observed

misorientation angles as high as 12◦ within a single cleavage facet. On the other

hand the angles between the facets were reported in the range 17◦ – 45◦. Ac-

cordingly θF = 30◦ is used in this example.

The maximum possible misorientation angle for this steel is θmax ≈ 60◦

(Bhattacharjee and Davis, 2002; Bhattacharjee et al., 2003). Therefore the ori-

entation angle, α, assigned to each brittle CA cell, is generated using a uniform

distribution, α ∈ [0 . . . θmax].
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Figure 4.29: The initial void volume fraction histogram.

The value η = 5×10−3 is used in this example. So only 5×10−3×900000 =

4500 randomly chosen brittle CA cells can initiate brittle fracture.

The values for other model parameters are cD = 1.4, cB = 3, Xmax
(D) = M

2/3
D

and Xmax
(B) = M

2/3
B .

As in the previous example the power hardening law of the form expressed by

equation (4.1) was used. The temperature dependence of the first yield stress,

σY0, and the hardening exponent, n, for this TMCR steel is shown in Figure

4.11. Both curves are fitted over the data extracted from the tensile test results

provided by Davis (2003).

One useful feature of the present CAFE models (both the full and the sim-

plified) is that each fracture mechanism can be “switched” on and off according

to user’s wish. This feature is used in this example to tune the parameters of

the Rousselier ductile damage model. By switching off the brittle failure we can

ensure that all fractures will occur in the ductile CA array.

If both the brittle and the ductile fracture mechanisms are switched on then

the running time of this example is about one week. If the brittle fracture is

switched off then the running time can be cut roughly by a factor of three, to

two – three days.
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However, even two days is a long time for tuning as tens of runs might be

necessary to find the best combination of modelling parameters. Accordingly

a simplified tuning procedure was adopted in this example to cut the number

of simulations (section 2.4). All three Rousselier model parameters, D, σ1 and

βF, were tuned together. The tuning was aimed at achieving the total energy

absorbed similar to that obtained in the Charpy test at the upper shelf tempe-

ratures.

A more thorough tuning could have been performed if experimental force –

time Charpy data were available. This sort of data is usually obtained with the

instrumented Charpy test (Shterenlikht et al., 2003). Unfortunately no such

data were available for this steel.

The Charpy impact data from Bhattacharjee et al. (2003) shown in Figure

4.39 was used for tuning. The experimentally obtained upper shelf temperatures

for this TMCR steel are T ≥ −20◦C and the corresponding Charpy energy values

are Cv ≈ 180J (Figure 4.39).

The best fitted values for the Rousselier model parameters are D = 3, σ1 =

500 MPa and βF = 8.

After the tuning the simulation of the Charpy test at T = −50◦C was

performed. The simulation results on the macro (FE) scale are shown in Figures

4.30 and 4.31. Accordingly Figures 4.32 – 4.35 demonstrate results on the micro

(CA) scale.

Figure 4.30.a shows the modelling force curve. As no instrumented Charpy

test data were available for this TMCR steel, Figure 4.30.b shows a typical force

curve obtained during the instrumented Charpy test on a TMCR steel different

from the one used in the present work. This experimental data is courtesy of

Davis (2003) and is given here only for qualitative comparison of force drop in

the model and in the experiment. It is very likely that the experimental force

curve obtained on the TMCR steel used in this example would exhibit a similar

drop to that shown in Figure 4.30.b.

It is easy to see that brittle fracture propagates slower in the model than in

the experiment. Brittle fracture propagation can be easily identified in the ex-

perimental force curve (Figure 4.30.b) as an instantaneous drop of force from the

maximum value to almost zero. The model, however, exhibits a more gradual
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Figure 4.30: Modelling (T = −50◦C) and experimental (T = −60◦) Charpy

force curves. Experimental data obtained on a different TMCR steel is courtesy

of Davis (2003).

reduction in force.

The present CAFE model cannot simulate a sharp drop of force because the

fracture cannot propagate from one finite element into another. This is a limita-

tion imposed by the organisation of the Abaqus code (section 5.1). Thus brittle

fracture must reinitiate in each finite element (each brittle CA) in the fracture

propagation path which results in a more gradual brittle fracture propagation

process.

The total energy absorbed predicted by the model is 89J. The energies ob-

tained in the experiment (Figure 4.39) at this temperature range from 117J to

142J. Therefore the full CAFE model probably underpredicts the total energy

absorbed at T = −50◦C. However, at least three simulations have to be per-

formed before some indication of the scatter of simulated energy values can be

obtained. Because of the long running times it was not feasible to do this with

the full CAFE model.

A deformed mesh at the end of the simulation is shown in Figure 4.31. The

failed FEs are removed from the mesh.

The visualisation of results on the micro (CA) scale is not straightforward

because all CAs are cubic but some FEs are not. To avoid the overlapping of the

CA blocks during visualisation they are shown shrunk. However the position

and the size of each CA is related to the position and size of the corresponding

FE. This technique is illustrated in Figure 4.32. The brittle CA arrays are used
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Figure 4.31: Deformed FE mesh of the Charpy test simulation at T = −50◦C.

for visualisation in this example.

Figure 4.33 shows all 4500 AliveC brittle cells generated for this example.

Only these cells can initiate the brittle fracture.

Fracture propagation on the CA scale is shown in Figure 4.34. Only DeadB

(black) and DeadD (green) cells are shown. So the brittle fracture areas are

black and green areas represent the ductile fracture. Fracture propagates on the

XZ plane along direction X.

Fracture starts in the ductile mode. However several small brittle cracks

are also visible in Figures 4.34.a and 4.34.b. It is easy to see that the fracture
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a. FE mesh of the damage zone
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Figure 4.32: FE mesh of the damage zone and the corresponding brittle CAs.

propagation front is not a straight line but rather an arc (Figures 4.34.c –

4.34.g). The brittle fracture starts after some ductile crack extension (Figure

4.34.d) and stops when the remaining ligament is very small and the dominant
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Figure 4.33: Locations of AliveC brittle cells.

fracture mode is ductile plastic collapse (Figures 4.34.g and 4.34.h).

This is a very realistic sequence of fracture propagation events.

The fracture surface at the end of the simulation is shown in Figure 4.35.

Photographs of three broken Charpy samples of this TMCR steel at T = −50◦

are shown in Figures 4.43.c – 4.43.e. The simulated percentage of the brittle

phase, 54%, is within the range of the experimental values which are from 45%

to 75%.

The regions of initial ductile fracture, of brittle fracture and of the final

ductile fracture, associated with the plastic collapse in the remaining ligament,

which are found in the experimental fracture surfaces at this temperature (Fig-

ures 4.43.c – 4.43.e.) are adequately reproduced in the simulated fracture surface

(Figure 4.35). Moreover the shapes of these regions are not too dissimilar espe-

cially if we remember that the simulated fracture surface is drawn on the initial

(undeformed) mesh geometry.

One point of difference between the simulated and the experimental fracture

surfaces is that the remaining ligament in the model is unbroken. The finite

elements in the last raw of the fracture propagation plane are still alive at the

end of the simulation. Figure 4.31 shows that these FEs are highly distorted
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Figure 4.34: Fracture propagation on the CA scale at T = −70◦C. Only DeadB

(black) and DeadD (green) cells are shown.

suggesting high shear and very low mean stresses in these elements. Accordingly

these elements still carry some load bearing capacity as the Rousselier damage
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Figure 4.35: The simulated Charpy fracture surface at T = −50◦C. The brittle

phase is 54%.

model can only account for a volumetric void growth, but not for a shape change

(section 2.1.6).

An unbroken remaining ligament of 0.1 – 0.25 mm is sometimes observed

in the tested Charpy samples of this TMCR steel though usually at higher

temperatures.

The results of this example show that the full CAFE model is capable of

simulating transitional ductile-brittle fracture in a Charpy specimen. On the

micro (CA) scale the model can predict the percentage of the brittle phase, the

locations and shapes of the ductile and the brittle fracture regions (Figure 4.35)

and the crack front throughout the simulation (Figure 4.34). The force – time

data, Figure 4.30.a, and the total energy absorbed are obtained on the macro

(FE) scale.

As was said earlier the major problem of the present CAFE model is the

inability to simulate brittle cracks running across the finite element boundaries.

Such is the limitation of the present realisation of a CAFE approach via the

VUMAT user subroutine and the Abaqus code. Accordingly the brittle fracture
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has to reinitialise in each finite element in the fracture propagation path. Thus

the brittle zone in the simulated Charpy fracture surface consists of many small

cracks rather than of a single large crack (Figure 4.35). On the macro-scale

such model behaviour results in a gradual reduction of force as opposed to an

instantaneous drop obtained experimentally (Figure 4.30).

Slow brittle fracture propagation can be also caused by a high misorientation

threshold, θF. The value used in this example, θF = 30◦, is only a rough guess

based on very limited experimental data (Bhattacharjee and Davis, 2002).

This example also shows how the fracture stress distribution (Figure 4.28)

is obtained from the grain size data (Figure 4.24). Although in this example

the separation of the full grain size histogram into two parts probably was not

necessary, because the cells with σF > 5000 MPa did not take part in the fracture

process, this is a useful technique that can be explored in future (section 5.1).

4.2 The simplified CAFE model

4.2.1 The Charpy test

In this example the simplified CAFE model is used to simulate the scatter

usually obtained experimentally in the Charpy test at transitional temperatures.

The ability of the full CAFE model to predict transitional behaviour and

scatter in terms of the percentage of the brittle phase was demonstrated for a

single-FE model in section 4.1.2 (Figure 4.16). In this example the Charpy test

model described in section 4.1.3 with the following parameters was used.

The initial void volume fraction for each ductile CA cell was taken a f0 =

1× 10−4.

The critical value of the damage variable, βF, was distributed across the duc-

tile CA arrays using the normal distribution with β̄F = 8 and STD(βF) = 1.2.

The β̄F value is based on the best-fitted critical damage variable obtained in

section 4.1.3. A typical βF histogram is shown in Figure 4.36.

The other two Rousselier model parameters were tuned following the pro-

cedure described in section 4.1.3 and the best-fitted values were found to be

σ1 = 517 MPa and D = 2.8.

The best-fitted values for this parameters in the full CAFE model were
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Figure 4.36: A typical histogram of βF.

σ1 = 500 MPa and D = 3. Thus the difference between the full and the

simplified models is small in this respect.

A temperature-dependent misorientation threshold, θF, is used in this ex-

ample. The following temperature dependence is used:

θF =



















θmax if T ≤ −80◦C

a× T + b if −80◦C < T < −20◦C

0 if T ≥ −20◦C

(4.2)

where a and b are chosen to ensure continuity of θF(T ), as shown in Figure 4.37.

The value of the concentration factor for the brittle CA array was increased

to cB = 11 in this example in an attempt to promote faster brittle fracture prop-

agation. The value cB = 3 used in the previous example (section 4.1.3) probably

was not high enough and as a consequence the brittle fracture propagation was

too slow (Figure 4.30.a).

Also the fraction of brittle cells capable of initiating brittle fracture was

increased two times compared to the full CAFE model, to η = 0.01. So the

number of brittle AliveC cells was 9000 in the simplified CAFE model.

All other model parameters, which are not mentioned here, have exactly the
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Figure 4.37: The misorientation threshold, θF(T ).

same values as in section 4.1.3.

In all simulations of this example variable mass scaling was applied to par-

ticularly small finite elements which form contact surfaces for the specimen –

anvil interactions (Figure 4.19). A stable time increment thus was increased

approximately ten times whereas the change in total energy of the whole model

was less than 0.1%. Accordingly the total simulation times were cut by a fac-

tor of ten. No mass scaling was applied to the finite elements in the damage

zone (Figure 4.21). The running time of each simulation in this example was

approximately ten hours.

The simulations were performed at several temperatures from T = −80◦C

to T = 0◦C, three runs at each temperature.

The results are shown in Figures 4.38 – 4.43. Results on the macro (FE)

scale are shown in Figures 4.38 – 4.40. Accordingly Figures 4.41 – 4.43 show

results on the micro (CA) scale.

The value of 50% impact transition temperature (ITT) shown in Figure 4.38

is based on the fracture surface appearance. Data presented by Bhattacharjee

et al. (2003) shows that for this TMCR steel 50% brittle phase is obtained in

the Charpy tests at T ≤ −50◦C.

The simulation results at T = 0◦C and at T ≤ −75◦C agree very well with

the experimental data. However, for other temperatures the model predicts a
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Figure 4.38: Charpy percentage of brittle phase. 50% ITT is taken from Bhat-

tacharjee et al. (2003). Experimental data was provided by Corus UK Ltd.

more sharp transition compared with that obtained experimentally. The 50%

ITT on the simulated data is around T = −30◦C.

The scatter of the simulated brittle phase values is higher in the transitional

region than at the upper and the lower shelf. At the upper shelf, at T ≥ −20◦C,

the three values of the brittle phase obtained at each temperature are virtually

identical. At the lower shelf, at T ≤ −60◦C, the maximum difference between

the three values is approximately 3% at T = −75◦C. However at transitional

temperatures the simulated scatter is much higher. The maximum difference

between the three simulated brittle phase values is about 21% at T = −30◦C

and T = −35◦C. The experimental scatter can only be assessed at T = −50◦C

where the maximum and the minimum values differ by 67%.

The experimental transition temperature range is from T = −75◦C to T =

0◦C, however, the upper bound value is arguable because there is no clear upper

shelf. The simulated data suggests that the modelling transitional temperature

range is less wide, approximately from T = −60◦C to T = −20◦C.
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Finally the simulated transition in Figure 4.38 towards the lower shelf is

smoother than towards the upper shelf. This result is in contrast to that ob-

tained in section 4.1.2 for the single-FE model, Figure 4.16. Moreover the lower

shelf behaviour in Figure 4.16 is similar to the upper shelf behaviour in Figure

4.38 in that the scatter is very low in both cases. The limit values of the brittle

phase (100% for the lower shelf in Figure 4.16 and 0% for the upper shelf in

Figure 4.38) were achieved in both cases.

So the single-FE model predicts 100% brittle phase at the lower shelf tem-

peratures, but does not predict 0% brittle phase at the upper shelf, Figure 4.16.

In contrast the simplified model of the Charpy test does not predict 100% brit-

tle phase at the lower shelf, but predicts 0% brittle phase at the upper shelf,

Figure 4.38. The brittle phase prediction of the simplified model of the Charpy

test is probably more physically based and it does agree very well with the

experimental data at the lower and the upper shelf.

Such a difference of the CAFE model performances in these two examples is

probably caused by different values of the CAFE model parameters and by the

fact that fracture cannot cross the finite element boundary due to the limitations

of the Abaqus code (section 5.1).

Figure 4.39 shows the experimental and the simulated values of the total

energy absorbed in the Charpy test.

The model can predict the upper shelf energy values reasonably well, however

the lower shelf and the transition temperature range are quite different from

the experimental data. The simulated lower shelf is achieved at T ≤ −60◦

and the lower shelf energies are about 60J. There is no clear lower shelf in

the experimental data. However, it is reasonable to assume that it starts at

T ≤ −80◦ and the energies there are 20J – 40J.

The simulated transition temperature range according to the energy data

is the same as the range obtained from the brittle phase results, from T =

−60◦C to T = −20◦C. However, the experimental transition temperature range

obtained from Figure 4.39 is from T = −80◦C to T = −20◦C, which is slightly

lower than the range that can be perceived from Figure 4.38.

The simulated scatter in energy values at the transitional temperatures is

higher than at the lower or at the upper shelf. The maximum difference between



100 CHAPTER 4. RESULTS

−100 −80 −60 −40 −20 0 20
0

20

40

60

80

100

120

140

160

180

200

 T, oC

E
ne

rg
y,

 J

CAFE model
Experiment A
Experiment B

Figure 4.39: Charpy transition energy data. Experimental data A is reproduced

from Bhattacharjee et al. (2003), and data B is courtesy of Davis (2003).

the three simulated energy values at the lower shelf is 14% at T = −70◦C. At

the upper shelf the maximum difference is only 1% at T = −20◦C. However, at

T = −35◦C the maximum difference is 60%.

The experimental data shows very high scatter at T = −60◦C (40% vari-

ation) and at T = −75◦C (more than 5 times). However, these experimental

results must be compared with some caution as they were obtained at different

times on different machines by different people, so there is a possibility that

different experimental practices could have contributed to such a large scatter.

The energy values predicted by the simplified CAFE model at T = −50◦C,

66J – 82J (Figure 4.39) are similar to that generated by the full CAFE model,

89J, section 4.1.3.

The lateral expansion measured on the deformed meshes and on the broken

Charpy samples is presented in Figure 4.40.

On the whole the simulated lateral expansion data resembles the simulated

energy, Figure 4.39. The transition temperature range in Figure 4.40 is from
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Figure 4.40: Simulated and experimental Charpy lateral expansion data.

T = −60◦C to T = −20◦C. The scatter at the upper shelf is very low, less than

1%. The scatter at the lower shelf is higher, 19% at T = −80◦C. However, the

scatter is much higher at the transitional range, from T = −60◦C to T = −35◦C.

The maximum difference between the three simulated lateral expansion values

is 51% at T = −35◦C.

The simulated lateral expansion values agree well with those obtained from

the broken Charpy samples using a digital calliper. However, the scatter in

the experimental values is smaller than that predicted by the simplified CAFE

model at T = −50◦C.

Figure 4.41 shows four simulated fracture surfaces obtained at the lower

shelf temperatures. Because of the very small level of scatter only one of three

simulated surfaces is shown for each temperature. As in section 4.1.3 deadD

cells are shown green and black cells are deadB.

The four fracture surfaces shown in Figure 4.41 differ very slightly. This is

an additional evidence in support of the point that the lower shelf behaviour

is achieved at T ≤ −60◦C. All four fracture surfaces show very little areas of
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a. −80◦C, 96% brittle b. −75◦C, 96% brittle

c. −70◦C, 94% brittle d. −60◦C, 94% brittle

Figure 4.41: The simulated Charpy fracture surfaces at the lower shelf tempe-

ratures.

ductile fracture, most of them are located immediately below the root of the

notch. However, some isolated islands of ductile fracture can be seen far from

the notch root in all four surfaces.

Experimental Charpy fracture surfaces obtained at T = −70◦C (Figure

4.43.a) and at T = −60◦C (Figure 4.43.b) show lower values of the brittle

phase, 80% and 60% accordingly. This is primarily due to significantly large

ductile shear regions. As was said earlier the present CAFE model cannot sim-

ulate shear fracture because the Rousselier damage model can only account for

volumetric void growth (section 5.1). Nevertheless there is a qualitative agree-

ment between the simulated and the experimental fracture surfaces at the lower
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shelf.

Two of the simulated fracture surfaces at the upper shelf are shown in Figure

4.42. Both show virtually 100% ductile fracture although very few isolated

islands of brittle fracture can be seen.

a. −20◦C, 0% brittle b. 0◦C, 0% brittle

Figure 4.42: The simulated Charpy fracture surfaces at the upper shelf tempe-

ratures.

Experimental Charpy fracture surfaces obtained at T = −20◦C (Figure

4.43.g) and at T = 0◦C (Figure 4.43.h) have 10% and 0% brittle phase accord-

ingly. These experimental fracture surfaces exhibit substantial delaminations

which cannot be modelled at present.

Finally Figure 4.43 shows the simulated fracture surfaces at transitional

temperatures. Three surfaces are shown for each temperature to illustrate sig-

nificant variation from one simulation to another.

At T = −50◦C and T = −40◦C the dominant fracture mode predicted by

the simplified CAFE model is still brittle, Figures 4.43.a – 4.43.f. However,

there are more islands of ductile fracture compared with the surfaces shown in

Figure 4.41. At the same time the locations and sizes of the ductile areas vary

much more at T = −50◦C and T = −40◦C than at the lower shelf temperatures,

Figure 4.41.

The simplified model predicted higher fraction of brittle phase at T = −50◦C

(Figures 4.43.a – 4.43.c) that that obtained with the full CAFE model at the

same temperature, Figure 4.35. This is most probably due to different values of
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a. −50◦C, 87% brittle b. −50◦C, 92% brittle

c. −50◦C, 90% brittle d. −40◦C, 88% brittle

Figure 4.43: The simulated Charpy fracture surfaces at transitional temperatu-

res. (Continued on pages 105 – 106).

modelling parameters, e.g. cB , used in the full and the simplified CAFE models.

The simulated fracture surfaces at T = −50◦C and T = −40◦C are quite far

from the experimental ones shown in Figures 4.43.c – 4.43.f. This is because the

simulated percentage of brittle phase is substantially higher than that obtained

experimentally.

At temperatures T = −35◦C and T = −30◦C, Figures 4.43.g – 4.43.l, the

variation from one simulation to another is greater than at T = −50◦C and

T = −40◦C.

For example at T = −35◦C Figure 4.43.g shows more islands of ductile

fracture towards the back side of the Charpy sample, whereas in Figure 4.43.h
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e. −40◦C, 89% brittle f. −40◦C, 80% brittle

g. −35◦C, 74% brittle h. −35◦C, 72% brittle

i. −35◦C, 87% brittle j. −30◦C, 57% brittle

Figure 4.43: Continued.
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k. −30◦C, 69% brittle l. −30◦C, 60% brittle

m. −25◦C, 25% brittle n. −25◦C, 28% brittle

o. −25◦C, 22% brittle

Figure 4.43: Continued.
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a. −70◦C, 80% brittle b. −60◦C, 60% brittle

c. −50◦C, 75% brittle d. −50◦C, 70% brittle

Figure 4.43: Fracture surfaces of the broken Charpy samples. The brittle phase

values are courtesy of Corus UK Ltd. (Continued on the next page).

ductile fracture areas are located closer to the notch of the specimen. However,

the final fractions of brittle phase for these two fracture surfaces are very similar,

74% and 72% respectively. The third fracture surface shown in Figure 4.43.i has

significantly higher brittle phase, 87%, and accordingly the ductile fracture zones

are mostly found next to the notch, although the is one ductile fracture island

located in the last (counting from the notch) row of the finite elements.

Similar variations can be found among simulated fracture surfaces at T =
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e. −50◦C, 45% brittle f. −40◦C, 25% brittle

g. −20◦C, 10% brittle h. 0◦C, 0% brittle

Figure 4.43: Continued.

−30◦C, Figures 4.43.j – 4.43.l. In Figure 4.43.l there is a large brittle region in

the centre of the fracture surface surrounded by the areas of ductile fracture.

This fracture surface is quite close qualitatively to that shown in Figure 4.35.

Finally at T = −25◦C, Figures 4.43.m – 4.43.o, the variation from one

simulation to another is smaller than at T = −35◦C and T = −30◦C. There is

no pattern as to where the brittle fracture areas are located. No brittle crack

running across the whole of a finite element can be found in any of the three

fracture surfaces. This is caused by a relatively small value of the misorientation



4.2. THE SIMPLIFIED CAFE MODEL 109

threshold, θF = 5◦ at T = −25◦C, Figure 4.37.

Thus low θF at the upper-transition and the upper shelf temperatures in-

hibits or stops brittle fracture propagation which otherwise would run very fast

across virtually any brittle cell due to very high value of the brittle concentration

factor, cB = 11. In contrast, at the lower shelf the brittle fracture can propagate

with very few deviations because θF is so high that virtually all neighbouring

cells m and l will have |αm − αl| < θF.

Thus it is probably true to say that in this example the simplified CAFE

model was able to simulate transitional behaviour largely due to the chosen

value of cB and the chosen temperature dependence of θF, equation (4.2). If

these two model parameters had other values then the whole transition curve

would have looked differently, or maybe there would have been no transitional

behaviour at all.
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Chapter 5

Discussion

The results of the four examples of Chapter 4 show that both the full and the

simplified CAFE models are suitable for the modelling of transitional ductile-

brittle fracture in steels. The performance of the two models differs very slightly,

however, the simplified model is much faster.

The ability of the full model to correctly address the strain reversal effects

was demonstrated in section 4.1.1 (Figure 4.5). The simulation of strain reversal

is a delicate task because many technical details must be taken into account (e.g.

elastic unloading, anisotropy of the Rousselier damage model, accurate strain

rate decomposition, etc.). Thus among other results this example demonstrates

that the Rousselier damage model was coded correctly (Appendix B).

Both the full and the simplified models can predict realistic transitional

behaviour, including the levels of scatter, in terms of the percentage of brittle

phase (Figures 4.16, 4.34, 4.35, 4.38, 4.41, 4.42 and 4.43) or in terms of the

total energy absorbed in the Charpy test (simulation results of section 4.1.3 and

Figure 4.39).

It is interesting to note that some results indicate that transition towards the

upper shelf is smoother than that towards the lower shelf, e.g. Figures 4.16, 4.38

(experimental data) and Figure 4.39 (both experimental and simulated data).

Such a behaviour can be explained with the use of the diagram of Figure 4.18.

Different slopes of the transition curve towards the upper and the lower

shelves, either in terms of the energy absorbed or in terms of the brittle phase,

111



112 CHAPTER 5. DISCUSSION

could be caused by the fact that temperature dependence of the first yield stress,

σY 0(T ), is such that
∂2σY 0

∂T 2
> 0 (5.1)

within the range of temperatures for which experimental data was available

(Figure 4.18). Consequently

|σY 0(T + ∆T )− σY 0(T )| < |σY 0(T −∆T )− σY 0(T )|. (5.2)

Accordingly the fracture propagation behaviour will change more with decreas-

ing than with increasing temperatures.

However, the simulated brittle phase data in Figure 4.38 exhibits the op-

posite trend, that the transition towards the lower shelf is smoother than that

towards the upper shelf. Probably a temperature dependence of σY 0 is only one

of the factors resulting in transition behaviour, and perhaps not the major one.

The transitional behaviour was achieved in the single-FE CAFE model in

section 4.1.2, Figure 4.16, solely due to the temperature dependence of σY 0.

This, of course, is only a qualitative prediction because the single-FE model

has the uniaxial stress state until the final failure. The model does not account

for necking or the strain concentration associated with it. Such a deformation

history (the uniaxial stress until failure) is virtually impossible to reproduce

experimentally, hence the simulation results obtained on the single-FE model

are only suitable for qualitative analysis of the performance of the full CAFE

model.

However, the temperature dependence of σY 0 was not enough to simulate a

realistic transitional behaviour in the Charpy test. The difference between the

first yield stresses at the upper and lower shelf temperatures is relatively small:

σY 0(−80◦C) = 505 MPa and σY 0(0◦C) = 453 MPa (Figure 4.11.a) and the

hardening exponent is virtually constant within this temperature range, Figure

4.11.b. Thus the temperature dependence of the misorientation threshold, θF,

was introduced in equation (4.2), Figure 4.37. With this addition results ob-

tained with the simplified CAFE model were much closer to the experimental

data, Figures 4.38, 4.39 and 4.40.

There is little experimental evidence that θF is temperature-sensitive. One

of the possible explanations for this is that usually misorientation analysis is
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performed on fracture surfaces obtained at the lower shelf temperatures (Bhat-

tacharjee and Davis, 2002; Bhattacharjee et al., 2003).

Other authors also had to introduce additional (apart from the temperature

dependence of σY 0) temperature-dependent modelling parameters to make their

models predict transitional behaviour. Of these, the most popular is temper-

ature dependence of the scale parameter of Weibull distribution, σu, equation

(2.28), page 29. Burstow (1998) and Burstow et al. (2003) reported the tuned

values of σu from 1722.8 MPa at T = −45◦C to 2699.9 MPa at T = 20◦C. The

possibility of the temperature dependence of the shape parameter of the Weibull

distribution, m, (equation (2.28), page 29) is discussed by Burstow (2003).

Probably a similar effect could have been achieved if the concentration factor

for the brittle CA array, cB , was made temperature-dependent. However such

modification has no physical basis and, if introduced, will be just a modelling

trick.

Useful information about the fracture progression and change of the per-

centage of brittle phase during crack propagation can be obtained from Figures

4.6.b, 4.7, 4.14 and 4.15. These outputs, if required, can be easily requested

from any finite element in the damage zone of the Charpy model.

With the use of an appropriate visualisation technique many useful details of

fracture propagation can be revealed by plotting the states of either the ductile

or the brittle CA arrays. In this particular realisation of the CAFE model the

brittle CA arrays were designed for visualisation (section 3.2.2). Figures 4.8,

4.9, 4.10, 4.17, 4.34, 4.35, 4.41, 4.42 and 4.43 provide information about the

fracture propagation on the micro (CA) scale. The shape of the crack front, the

speed of fracture propagation, locations and shapes of the areas of brittle and

ductile fracture can be obtained from these Figures.

The ways in which material properties can be taken into account by both

models were demonstrated in Chapter 4. Particular attention should be drawn

towards the grain size distribution.

It was shown in section 4.1.3 how a duplex grain size distribution was simula-

ted by the full CAFE model. The strategy of applying different random number

generators to simulate different parts of the grain size histogram can be used

to simulate a grain distribution data of a much greater complexity. Moreover,
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additional data (e.g. the histogram of the second phase particle sizes), if avail-

able, can be easily included into the model through the fracture stress histogram

following the technique used in section 4.1.3. The method used in section 4.1.3

is very simple. However, proper statistical methods are available if one wants

to use them (Devroye, 1987; McLachlan and Basford, 1988; Scott, 1992). These

methods, however, are significantly more complex and require some knowledge

of probability and statistics.

TMCR steels were chosen to verify the CAFE model in Chapter 4 only

because the author had an access to the data generated by a thorough study of

one particular TMCR steel. However, the CAFE model described in Chapter 3

is designed to be able to simulate other widely used types of steels. Of particular

importance for the fracture mechanics community are line pipe steels, ship steels,

pressure vessel steels, nuclear reactor steels etc. Moreover the model can be

applied to other materials, e.g. aluminium, provided that cell properties and

state variables for the brittle and ductile CA arrays, Λm(D), Λm(B), Γm(D) and

Γm(B), are chosen according to the knowledge of the micromechanics of fracture

of this material.

As was said in section 3 the present CAFE model was built around C3D8R,

a finite element with a single integration point. This is the only 8-noded finite

element allowed in the Abaqus\Explicit program. However, if finite elements

with several integration points are used (e.g. in another FEA program) then

many additional modelling possibilities are open because the macro strain gra-

dients can be supplied to the CA arrays. The algorithms for strain redistribution

across CA cells (Step 3, page 49, Step 7, page 51) and for calculating the FE

stress (Step 11, page 52) can be modified to take this into account. This will

allow for better simulation of local strain and stress concentration ahead of a

crack.

The present CAFE models were primarily designed to model fracture propa-

gation. Accordingly the size of the smallest modelling entity (CA cell) is chosen

equal to that of the fracture propagation step. However, the model formalism

allows for much smaller entities to be used. This can be utilised e.g. for explicit

simulation of crack initiation. In this case the smallest modelling entity has to

be chosen on the basis of a crack initiation site size, typical of the simulated
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material. For steels these are most usually carbides. Accordingly a much more

thorough modelling of the fracture initiation can be achieved if the CAFE model

has cells of a typical carbide size. This can be technically done in two ways.

The first way is to create all brittle CA cells with size equal to that of a

typical carbide in a simulated steel. This approach was explored by Das et al.

(2001); Das (2002); Das et al. (2003). The results presented by Das (2002) show

very good correlation between the prediction of oxide cracking during hot rolling

and the experimental observations of the quality of the slab surface after rolling.

The second approach is to create a third layer of CA only for aliveC brittle

cells. This additional layer can be used for detailed modelling of stress fields at

a grain boundary carbide. The second approach seems more favourable because

the third level CA arrays are created only around the grain boundary carbides.

So the highest level of detalisation in the CAFE model is used only where it

is really required. Moreover, this approach allows for three CA arrays with

independent cell sizes.

A detailed simulation of fracture initialisation according to the second ap-

proach described above is recommended for future work.

5.1 Unresolved problems and future work

1. Fracture cannot propagate across the finite element boundary at present.

The information given by the Abaqus solver to the VUMAT subroutine is lim-

ited. For instance no finite element number, either external, given by the user, or

internal, used in the solver stiffness matrix, is given to VUMAT. This means that it

is not possible to establish which finite elements are being processed in this call

to the subroutine. Consequently it is not possible to find the neighbouring finite

elements from VUMAT. Thus fracture must reinitiate in each finite element in the

fracture propagation path. Fracture initiation requires more energy than prop-

agation. Therefore this limitation is likely to result in over-estimated energy

values.

One way of obtaining the numbers of neighbouring elements is to use material

point coordinates which are given to VUMAT. However, this procedure is non-

trivial and computationally expensive as the full deformation history must be
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traced for each finite element in the damage zone. Work in this direction is

recommended for the future.

2. Shear ductile fracture cannot be modelled at present. The Rousselier contin-

uous ductile damage model, used in this work, can only account for volumetric

void growth.

An additional criterion has to be applied to estimate the onset of shear

instability of a ductile damage cell. There are a number of works addressing

this issue (Rice, 1977; Rousselier and Barbier, 1997; Barbier et al., 1998). The

possibility of including an appropriate shear localisation model into the present

CAFE structure was not explored due to time constraints. However this is

possible and is recommended for future work.

3. There are many model parameters which require proper tuning before good

correlation with the experiment is achieved.

Parameters such as Xmax
(D) , Xmax

(B) , cD, cB strongly affect model performance.

Yet, in this work the values for these parameters were based on a rough guess

and on some data fitting. A more detailed understanding of the fracture process

at the micro-scale might help to find metallurgically meaningful values.

It would be interesting to investigate in greater detail the influence of the

CAFE model parameters on various simulation results, e.g. the effect of θF on

the transition temperature range, the link between cD and cB and the upper

and the lower Charpy energy values, the influence of the grain size distribution

on the transition temperature range. It might be better to use a different idea

of how Xmax
(D) and Xmax

(B) should be chosen.

This analysis was not performed as part of the present work because of

significant demands for the computing power and time constraints.

5.2 Overall conclusions

The CAFE model proposed in this work is designed for fast three-dimensional

multi-scale analysis. One typical application of such a model is a simulation

of transitional ductile-brittle fracture in steels. This engineering problem is of

high practical importance. However, so far it could not be solved successfully
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by the pure finite element methods. The results presented in this work show

how this problem can be solved with the CAFE model.

The author believes that the model can be useful in other areas of engi-

neering. It might need to be modified, additional parameters might need to be

included, but the basic structure can remain as described in Chapter 3.
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Appendix A

The CA cell neighbourhood

Figure A.1 illustrates the 26-cell neighbourhood used in both the full and the

simplified CAFE models. The neighbourhood is shown as three sections of a

3× 3× 3 cell cube along direction k (or 3).

Each neighbourhood cell has three characteristics. These are:

1. Direction cosines, i.e. the cosines of angles that a line, connecting the

centres of each cell with the central cell, makes with the basis axes (i, j,

k),

2. Cell coordinates relative to the coordinates of the central cell,

3. The cell number.

These characteristics are written in three lines inside each neighbourhood

cell in Figure A.1.

Because of the central symmetry only 13 out of 26 neighbouring cells have

unique combination of direction cosines. These cells have unique numbers. Their

symmetrical partner cells have the same number but with a bar on top, e.g. cell

6̄ is a symmtrical partner of cell 6.

Coordinates of each neighbourhood cell are, of course, unique.
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Figure A.1: Neighbouring cell numbering convention



Appendix B

Rousselier model

integration

Integration of the Rousselier continuous material damage model (Rousselier

et al. (1989), section 2.1.6) for a single integration point is shown below.

Where explicit time is not given, ti+1 is assumed.

If we substitute differentials by finite differences the complete set of equia-

tions will have the form (Aravas, 1987; Rousselier et al., 1989; HKS, 2001):

∆εp
m −∆εp

eq

B (β)

3σ1
Dexp

(

σm

ρσ1

)

= 0 (B.1)

σeq

ρ
−H

(

εp
eq

)

+ B (β) Dexp

(

σm

ρσ1

)

= 0 (B.2)

σm = σe
m − 3K∆εp

m (B.3)

σeq = σe
eq − 3G∆εp

eq (B.4)

∆β = ∆εp
eqDexp

(

σm

ρσ1

)

(B.5)

ρ (β) =
1

1− f0 + f0expβ
(B.6)

B (β) =
σ1f0expβ

1− f0 + f0expβ
(B.7)

where σe
m = 1

3σe
ii; σe

eq =
√

3
2Se

ijS
e
ij ; Se

ij = σe
ij − σe

mδij ; σe
ij = Eijkl ε̂kl and

ε̂kl = εe
ij(ti) + ∆εij (B.8)
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εp
eq = εp

eq(ti) + ∆εp
eq (B.9)

β = β(ti) + ∆β (B.10)

For the rest of the variables refer to the Nomenclature, page 10, and to

section 2.1.6, page 23.

The equations (B.1) – (B.7) are solved by the Newton’s method. The strain

increments ∆εp
m and ∆εp

eq are primarily unknowns. We find them by solving

the equations (B.1) and (B.2). If we write the equations (B.1) and (B.2) as:







f
(

∆εp
m, ∆εp

eq , ∆β
)

= 0

g
(

∆εp
m, ∆εp

eq , ∆β
)

= 0
(B.11)

then the solution is found by the iterative process. Each cycle the following

matrix equation is solved:

J · c = A (B.12)

where

J =





∂f
∂∆εp

m

∂f
∂∆εp

eq

∂g
∂∆εp

m

∂g
∂∆εp

eq



 , c =





cm

ceq



 , A = −





f

g



 .

Then the strain increments are updated:

∆εp
m ⇐ ∆εp

m + cm (B.13)

∆εp
eq ⇐ ∆εp

eq + ceq (B.14)

The steps (B.12), (B.13) and (B.14) are repeated until the correction values cm

amd ceq are less that the specified tolerance.

Components of Jacobian

∂f

∂∆εp
m

= 1−
D∆εp

eq

3σ1

∂

∂∆εp
m

[

B (β) exp

(

σm

ρσ1

)]

(B.15)

∂f

∂∆εp
eq

= −B (β)

3σ1
Dexp

(

σm

ρσ1

)

−
D∆εp

eq

3σ1

∂

∂∆εp
eq

[

B (β) exp

(

σm

ρσ1

)]

(B.16)

∂g

∂∆εp
m

=
∂

∂∆εp
m

(

σeq

ρ

)

+ D
∂

∂∆εp
m

[

B (β) exp

(

σm

ρσ1

)]

(B.17)

∂g

∂∆εp
eq

=
∂

∂∆εp
eq

(

σeq

ρ

)

−
∂H

(

εp
eq

)

∂∆εp
eq

+ D
∂

∂∆εp
eq

[

B (β) exp

(

σm

ρσ1

)]

(B.18)
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further:

∂

∂∆εp
m

[

B (β) exp

(

σm

ρσ1

)]

=
∂B (β)

∂β

∂β

∂∆εp
m

exp

(

σm

ρσ1

)

+

B (β) exp

(

σm

ρσ1

)

1

σ1

(

∂σm

∂∆εp
m

1

ρ
+ σm

∂ 1
ρ

∂β

∂β

∂∆εp
m

)

(B.19)

∂

∂∆εp
eq

[

B (β) exp

(

σm

ρσ1

)]

=
∂B (β)

∂β

∂β

∂∆εp
eq

exp

(

σm

ρσ1

)

+

B (β) exp

(

σm

ρσ1

)

1

σ1

(

∂σm

∂∆ epsilonp
eq

1

ρ
+ σm

∂ 1
ρ

∂β

∂β

∂∆εp
eq

)

(B.20)

∂

∂∆εp
m

(

σeq

ρ

)

=
∂σeq

∂∆εp
m

1

ρ
+ σeq

∂ 1
ρ

∂β

∂β

∂∆εp
m

(B.21)

∂

∂∆εp
eq

(

σeq

ρ

)

=
∂σeq

∂∆ epsilonp
eq

1

ρ
+ σeq

∂ 1
ρ

∂β

∂β

∂∆εp
eq

(B.22)

From (B.7):

∂B (β)

∂β
= σ1f0

expβ(1− f0 + f0expβ)− f0(expβ)2

(1− f0 + f0expβ)
2 =

σ1f0expβ(1− f0)

(1− f0 + f0expβ)
2 (B.23)

From (B.6):
∂ 1

ρ

∂β
= f0expβ (B.24)

From (B.3):
∂σm

∂∆εp
m

= −3K (B.25)

∂σm

∂∆εp
eq

= 0 (B.26)

From (B.4):
∂σeq

∂∆εp
m

= 0 (B.27)

∂σeq

∂∆εp
eq

= −3G (B.28)

Calculations of partial derivatives ∂β
∂∆εp

m
and ∂β

∂∆εp
eq

is slightly more complicated

because dependence between the variables β, ∆εp
m and ∆εp

eq is described by an

implicit function defined by equation (B.5).

If we regroup equation (B.5) to the following form

h
(

∆β, ∆εp
eq , ∆εp

m

)

= ∆β −∆εp
eqDexp

(

σm

ρσ1

)

= 0 (B.29)
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we can get the sought partial derivatives using the formula for partial derivatives

of the implicit function (e.g. Brand, 1955):

∂β

∂∆εp
m

= −
∂h

∂∆εp
m

∂h
∂∆β

(B.30)

∂β

∂∆εp
eq

= −
∂h

∂∆εp
eq

∂h
∂∆β

(B.31)

In the above we used the fact that β = βt + ∆β that leads to ∂β
∂∆εp

m
= ∂∆β

∂∆εp
m

and

∂β
∂∆εp

eq
= ∂∆β

∂∆εp
eq

.

Thus we can obtain from (B.29):

∂h

∂∆εp
m

= −∆εp
eqDexp

(

σm

ρσ1

)

1

σ1ρ

∂σm

∂∆εp
m

(B.32)

∂h

∂∆εp
eq

= −Dexp

(

σm

ρσ1

)

−∆εp
eqDexp

(

σm

ρσ1

)

1

σ1ρ

∂σm

∂∆εp
eq

(B.33)

∂h

∂∆β
= 1−∆εp

eqDexp

(

σm

ρσ1

)

σm

σ1

∂ 1
ρ

∂∆β
(B.34)

By sibstituting (B.32), (B.33) and (B.34) into (B.30) and (B.31), and taking

into account that ∂σm

∂∆εp
eq

= 0 and
∂ 1

ρ

∂∆β =
∂ 1

ρ

∂β , we get:

∂β

∂∆εp
m

= −
−∆εp

eqDexp
(

σm

ρσ1

)

1
σ1ρ

∂σm

∂∆εp
m

1−∆εp
eqDexp

(

σm

ρσ1

)

σm

σ1

∂ 1
ρ

∂β

(B.35)

∂β

∂∆εp
eq

= −
−Dexp

(

σm

ρσ1

)

1−∆εp
eqDexp

(

σm

ρσ1

)

σm

σ1

∂ 1
ρ

∂β

(B.36)

By simlifying these equations we get:

∂β

∂∆εp
m

=
∆εp

eqDexp
(

σm

ρσ1

)

1
σ1ρ

∂σm

∂∆εp
m

1−∆εp
eqDexp

(

σm

ρσ1

)

σm

σ1

∂ 1
ρ

∂β

(B.37)

∂β

∂∆εp
eq

=
Dexp

(

σm

ρσ1

)

1−∆εp
eqDexp

(

σm

ρσ1

)

σm

σ1

∂ 1
ρ

∂β

(B.38)

By substituting (B.24)-(B.28) into (B.19)-( B.22), (B.37) and (B.38) we get:

∂

∂∆εp
m

[

B (β) exp

(

σm

ρσ1

)]

= exp

(

σm

ρσ1

)[

∂B (β)

∂β

∂β

∂∆εp
m

+

B (β)

σ1

(−3K

ρ
+ σmf0expβ

∂β

∂∆εp
m

)]

(B.39)



APPENDIX B. ROUSSELIER MODEL INTEGRATION 125

∂

∂∆εp
eq

[

B (β) exp

(

σm

ρσ1

)]

= exp

(

σm

ρσ1

)(

∂B (β)

∂β

∂β

∂∆εp
eq

+

B (β)

σ1
σmf0expβ

∂β

∂∆εp
eq

)

(B.40)

∂

∂∆εp
m

(

σeq

ρ

)

= σeqf0expβ
∂β

∂∆εp
m

(B.41)

∂

∂∆εp
eq

(

σeq

ρ

)

=
−3G

ρ
+ σeqf0expβ

∂β

∂∆εp
eq

(B.42)

∂β

∂∆εp
m

=
−3K∆εp

eqDexp
(

σm

ρσ1

)

ρ
(

σ1 −∆εp
eqDexp

(

σm

ρσ1

)

σmf0expβ
) (B.43)

∂β

∂∆εp
eq

=
Dexp

(

σm

ρσ1

)

1−∆εp
eqDexp

(

σm

ρσ1

)

σm

σ1
f0expβ

(B.44)

The components of Jacobian can be found as:

∂f

∂∆εp
m

= 1−
D∆εp

eq

3σ1

∂

∂∆εp
m

[

B (β) exp

(

σm

ρσ1

)]

(B.45)

∂f

∂∆εp
eq

= − D

3σ1

{

B (β) exp

(

σm

ρσ1

)

+

∆εp
eq

∂

∂∆εp
eq

[

B (β) exp

(

σm

ρσ1

)]}

(B.46)

∂g

∂∆εp
m

= σeqf0expβ
∂β

∂∆εp
m

+ D
∂

∂∆εp
m

[

B (β) exp

(

σm

ρσ1

)]

(B.47)

∂g

∂∆εp
eq

=
−3G

ρ
+ σeqf0expβ

∂β

∂∆εp
eq
−

∂H
(

εp
eq

)

∂∆εp
eq

+

D
∂

∂∆εp
eq

[

B (β) exp

(

σm

ρσ1

)]

(B.48)

where

∂

∂∆εp
m

[

B (β) exp

(

σm

ρσ1

)]

= exp

(

σm

ρσ1

)[

∂B (β)

∂β

∂β

∂∆εp
m

+

B (β)

σ1

(−3K

ρ
+ σmf0expβ

∂β

∂∆εp
m

)]

(B.49)

∂

∂∆εp
eq

[

B (β) exp

(

σm

ρσ1

)]

= exp

(

σm

ρσ1

)(

∂B (β)

∂β

∂β

∂∆εp
eq

+

B (β)

σ1
σmf0expβ

∂β

∂∆εp
eq

)

(B.50)
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∂β

∂∆εp
m

=
−3K∆εp

eqDexp
(

σm

ρσ1

)

ρ
(

σ1 −∆εp
eqDexp

(

σm

ρσ1

)

σmf0expβ
) (B.51)

∂β

∂∆εp
eq

=
Dexp

(

σm

ρσ1

)

1−∆εp
eqDexp

(

σm

ρσ1

)

σm

σ1
f0expβ

(B.52)

∂B (β)

∂β
=

σ1f0expβ(1− f0)

(1− f0 + f0expβ)
2 (B.53)

Equations (B.1) – (B.14) and (B.45) – (B.53) are required to find ∆εp
m and

∆εp
eq .

When ∆εp
m and ∆εp

eq are known then σm and σeq are found from equations

(B.3) and (B.4), β from (B.10) and (B.5) and

σij =
σeq

σe
eq

Se
ij + σmδij (B.54)

∆εp
ij =

3

2

Se
ij

σe
eq

∆εp
eq + ∆εp

mδij , (B.55)

εe
ij = εe

ij(ti) + ∆εij −∆εp
ij (B.56)

As seen from equations (B.8) – (B.10) the elastic strain tensor, εe
ij , equivalent

plastic strain, εp
eq, and the damage variable, β, have to be stored from one time

increment to another throughout the analysis.
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